login
Triangle T_3(n, m), the number of surjective multi-valued functions from {1, 1, 1, 2, 3, ..., n-2} to {1, 2, 3, ..., m} by rows (n >= 1, 1 <= m <= n).
4

%I #16 Apr 15 2022 05:21:12

%S 0,0,0,1,2,1,1,6,9,4,1,14,45,52,20,1,30,177,388,360,120,1,62,621,2260,

%T 3740,2880,840,1,126,2049,11524,30000,39720,26040,6720,1,254,6525,

%U 54292,207620,418320,460320,262080,60480,1,510,20337,243268,1309560,3755640,6150480,5779200,2903040,604800

%N Triangle T_3(n, m), the number of surjective multi-valued functions from {1, 1, 1, 2, 3, ..., n-2} to {1, 2, 3, ..., m} by rows (n >= 1, 1 <= m <= n).

%C T_3(1, m) = T_3(2, m) = 0 by definition. T_3(n, m) also gives the number of ordered partitions of {1, 1, 1, 2, 3, ..., n-2} into exactly m parts.

%H G. C. Greubel, <a href="/A172107/b172107.txt">Rows n = 1..50 of the triangle, flattened</a>

%H M. Griffiths and I. Mezo, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Griffiths/griffiths11.html">A generalization of Stirling Numbers of the Second Kind via a special multiset</a>, JIS 13 (2010) #10.2.5.

%F T_3(n, m) = Sum_{j=0..m} binomial(m, j)*binomial(j+2, 3)*(-1)^(m-j)*j^(n-3), for n >= 3, with T(1, 1) = T(2, 1) = T(2, 2) = 0.

%F Sum_{k=1..n} T_3(n, k) = A172110(n).

%F Sum_{k=1..n} (-1)^k*T_3(n, k) = 0. - _G. C. Greubel_, Apr 14 2022

%e Triangle begins as:

%e 0;

%e 0, 0;

%e 1, 2, 1;

%e 1, 6, 9, 4;

%e 1, 14, 45, 52, 20;

%e 1, 30, 177, 388, 360, 120;

%e 1, 62, 621, 2260, 3740, 2880, 840;

%e 1, 126, 2049, 11524, 30000, 39720, 26040, 6720;

%e 1, 254, 6525, 54292, 207620, 418320, 460320, 262080, 60480;

%e 1, 510, 20337, 243268, 1309560, 3755640, 6150480, 5779200, 2903040, 604800;

%t f[r_, n_, m_]:= Sum[Binomial[m, l] Binomial[l+r-1, r] (-1)^(m-l) l^(n-r), {l,m}]; For[n = 3, n <= 10, n++, Print[Table[f[3, n, m], {m, 1, n}]]]

%o (Magma)

%o T:= func< n,k,m | n lt 3 select 0 else (&+[(-1)^(k+j)*Binomial(k,j)*Binomial(j+m-1,m)*j^(n-m): j in [1..k]]) >;

%o [T(n,k,3): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Apr 14 2022

%o (SageMath)

%o def T(n,k,m):

%o if (n<3): return 0

%o else: return sum( (-1)^(k-j)*binomial(k,j)*binomial(j+m-1,m)*j^(n-m) for j in (1..k) )

%o flatten([[T(n,k,3) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Apr 14 2022

%Y This is related to A019538, A172106 and A172108.

%Y Row sums give A172110.

%K nonn,tabl

%O 1,5

%A _Martin Griffiths_, Jan 25 2010