Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Sep 08 2022 08:45:50
%S 1,1,1,1,-2,1,1,-47,-47,1,1,-2027,-2072,-2027,1,1,-249599,-251624,
%T -251624,-249599,1,1,-91359839,-91609436,-91611416,-91609436,
%U -91359839,1,1,-100039779839,-100131139676,-100131389228,-100131389228,-100131139676,-100039779839,1
%N Triangle, read by rows, T(n,k,q) = c(k,q) + c(n-k,q) - c(n, q) where c(n,q) = Product_{j=1..n-1} ((q^(j+1) - 1)/(q-1)) and q = 3.
%C Row sums are: {1, 2, 0, -92, -6124, -1002444, -457549964, -600604617484, -2298816299112204, -25856055844713627404, -858811326017167374184204, ...}.
%H G. C. Greubel, <a href="/A172092/b172092.txt">Rows n = 0..50 of triangle, flattened</a>
%F Let c(n,q) = Product_{j=1..n-1} ((q^(j+1) - 1)/(q-1)) then T(n,k,q) = -c(n,q) + c(n-k,q) + c(k, q) for q=3.
%e Triangle begins as:
%e 1;
%e 1, 1;
%e 1, -2, 1;
%e 1, -47, -47, 1;
%e 1, -2027, -2072, -2027, 1;
%e 1, -249599, -251624, -251624, -249599, 1;
%e 1, -91359839, -91609436, -91611416, -91609436, -91359839, 1;
%p T:= proc(n, k, q) option remember;
%p c(n,q):= mul( (q^(j+1) -1)/(q-1), j=1..n-1);
%p T(n,k,q):= c(k,q) + c(n-k,q) - c(n,q);
%p end:
%p seq(seq(T(n,k,3), k=0..n), n=0..10); # _G. C. Greubel_, Dec 05 2019
%t c[n_, q_]:= Product[(q^(j+1) -1)/(q-1), {j, n-1}]; T[n_, k_, q_]:= c[k, q] + c[n-k, q] - c[n, q]; Table[T[n, k, 3], {n,0,10}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Dec 05 2019 *)
%o (PARI) c(n,q) = prod(j=1, n-1, (q^(j+1) -1)/(q-1));
%o T(n, k, q) = c(k,q) + c(n-k,q) - c(n,q);
%o for(n=0, 10, for(k=0, n, print1(T(n,k,3), ", "))) \\ _G. C. Greubel_, Dec 05 2019
%o (Magma) c:= func< n,q | n lt 2 select 1 else &*[(q^(j+1) -1)/(q-1): j in [1..n-1]] >;
%o T:= func< n,k,q | c(k,q) + c(n-k,q) - c(n,q) >;
%o [T(n,k,3): k in [0..n], n in [0..10]]; // _G. C. Greubel_, Dec 05 2019
%o (Sage)
%o def c(n,q): return product( (q^(j+1) -1)/(q-1) for j in (1..n-1))
%o def T(n,k,q): return c(k,q) + c(n-k,q) - c(n,q)
%o [[T(n,k,3) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Dec 05 2019
%Y Cf. A172091 (q=2), this sequence (q=3), A172093 (q=4).
%K sign,tabl
%O 0,5
%A _Roger L. Bagula_, Jan 25 2010
%E Edited by _G. C. Greubel_, Dec 05 2019