login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k with k=7.
11

%I #24 Sep 08 2022 08:45:50

%S 1,8,46,230,1068,4744,20476,86662,361711,1494384,6126818,24972326,

%T 101320712,409609664,1651162688,6640469816,26655382802,106830738224,

%U 427612715516,1709790470780,6830461107736,27266848437608

%N Expansion of (2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k with k=7.

%C This sequence is the 7th diagonal below the main diagonal (which itself is A026641) in the array which grows with "Pascal rule" given here by rows: 1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,2,2,3,3,4,4,5,5,6,6,7,7, 1,2,4,6,9,12,16,20,25,30, 1,3,7,13,22,34,50,70,95. The Maple programs give the first diagonals of this array.

%C Apparently the number of peaks in all Dyck paths of semilength n+7 that are 5 steps higher than the preceding peak. - _David Scambler_, Apr 22 2013

%H Vincenzo Librandi, <a href="/A172064/b172064.txt">Table of n, a(n) for n = 0..200</a>

%F a(n) = Sum_{j=0..n} (-1)^j * binomial(2*n+k-j, n-j), with k=7.

%F a(n) ~ 2^(2*n+8)/(3*sqrt(Pi*n)). - _Vaclav Kotesovec_, Apr 19 2014

%F Conjecture: 2*n*(n+7)*(3*n+11)*a(n) -(21*n^3+212*n^2+719*n+840)*a(n-1) -2*(2*n+5)*(n+3)*(3*n+14)*a(n-2)=0. - _R. J. Mathar_, Feb 19 2016

%e a(4) = C(15,4) - C(14,3) + C(13,2) - C(12,1) + C(11,0) = 7*13*15 - 14*13*2 + 78 - 12 + 1 = 1068.

%p for k from 0 to 20 do for n from 0 to 40 do a(n):=sum('(-1)^(p)*binomial(2*n-p+k, n-p)', p=0..n): od:seq(a(n), n=0..40):od;

%p # 2nd program

%p for k from 0 to 40 do taylor((2/(3*sqrt(1-4*z)-1+4*z))*((1-sqrt(1-4*z))/(2*z))^k, z=0, 40+k):od;

%t CoefficientList[Series[(2/(3*Sqrt[1-4*x]-1+4*x))*((1-Sqrt[1-4*x])/(2*x))^7, {x, 0, 20}], x] (* _Vaclav Kotesovec_, Apr 19 2014 *)

%o (PARI) k=7; my(x='x+O('x^30)); Vec((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k) \\ _G. C. Greubel_, Feb 17 2019

%o (Magma) k:=7; m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2/(3*Sqrt(1-4*x)-1+4*x))*((1-Sqrt(1-4*x))/(2*x))^k )); // _G. C. Greubel_, Feb 17 2019

%o (Sage) k=7; ((2/(3*sqrt(1-4*x)-1+4*x))*((1-sqrt(1-4*x))/(2*x))^k ).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, Feb 17 2019

%Y Cf. A091526 (k=-2), A072547 (k=-1), A026641 (k=0), A014300 (k=1), A014301 (k=2), A172025 (k=3), A172061 (k=4), A172062 (k=5), A172063 (k=6), A172065 (k=8), A172066 (k=9), A172067 (k=10).

%K easy,nonn

%O 0,2

%A _Richard Choulet_, Jan 24 2010