login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Backwards van Eck transform of A010060.
3

%I #16 Jun 24 2021 07:20:53

%S 0,0,1,3,2,2,1,3,1,3,1,3,2,2,1,3,2,2,1,3,2,2,1,3,1,3,1,3,2,2,1,3,1,3,

%T 1,3,2,2,1,3,1,3,1,3,2,2,1,3,2,2,1,3,2,2,1,3,1,3,1,3,2,2,1,3,2,2,1,3,

%U 2,2,1,3,1,3,1,3,2,2,1,3,2,2,1,3,2,2,1,3,1,3,1,3,2,2,1,3,1,3,1,3,2,2,1,3,1

%N Backwards van Eck transform of A010060.

%C See A171898 for definition. This assumes the offset of A010060 is taken to be 1.

%C A161916 gives the forwards van Eck transform of A010060.

%C Since A001285(n) = 1+A010060(n) differ only by a constant, this is also the Backwards van Eck Transform of A001285. - _R. J. Mathar_, Jun 24 2021

%F A026491(n-1)-A026491(n-2) = a(n) for n>=3. - _Michel Dekking_, Apr 11 2019

%Y Cf. A010060, A161916, A171898. See also A026491.

%K nonn

%O 1,4

%A _N. J. A. Sloane_, Oct 22 2010