login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

1 and all numbers >= 10.
1

%I #25 May 08 2017 17:39:57

%S 1,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,

%T 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,

%U 55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77

%N 1 and all numbers >= 10.

%C Used to illustrate Besicovitch's density theorem.

%D H. Halberstam and K. F. Roth, Sequences, Oxford, 1966; see p. 6.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).

%F G.f.: x*(1+8*x-8*x^2)/(1-x)^2. - _Bruno Berselli_, Sep 02 2011

%t Table[n + 8 - 8 Boole[n == 1], {n, 69}] (* or *)

%t Rest@ CoefficientList[Series[x (1 + 8 x - 8 x^2)/(1 - x)^2, {x, 0, 69}], x] (* _Michael De Vlieger_, May 03 2017 *)

%o (PARI) if(n==1,1,n+9) \\ _Charles R Greathouse IV_, Sep 02 2011

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_, Oct 19 2010