login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171842
Binomial transform of 1,0,1,0,2,0,4,0,8,0,16,...
2
1, 1, 2, 4, 9, 21, 50, 120, 289, 697, 1682, 4060, 9801, 23661, 57122, 137904, 332929, 803761, 1940450, 4684660, 11309769, 27304197, 65918162, 159140520, 384199201, 927538921, 2239277042, 5406093004, 13051463049, 31509019101, 76069501250, 183648021600, 443365544449, 1070379110497
OFFSET
0,3
COMMENTS
Number of nonisomorphic n-element interval orders with no 3-element antichain. - Richard Stanley, Nov 21 2011
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [1, 1, 0; 1, 1, 1; 0, 1, 1] or of the 3 X 3 matrix [1, 0, 1; 0, 1, 1; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
a(n) is the number of Motzkin n-paths of height <= 2. - Alois P. Heinz, Nov 24 2023
LINKS
Michael D. Barrus, Weakly threshold graphs, arXiv preprint arXiv:1608.01358 [math.CO], 2016.
Heinrich Niederhausen, Inverses of Motzkin and Schroeder Paths, arXiv:1105.3713 [math.CO], 2011.
FORMULA
a(n) = A024537(n-1), n>0. - R. J. Mathar, Jan 28 2010
a(n) = 3*a(n-1)-a(n-2)-a(n-3). G.f.: (1-2*x)/((1-x)*(1-2*x-x^2)). - Colin Barker, Apr 01 2012
a(n) = (2+(1-sqrt(2))^n+(1+sqrt(2))^n)/4. - Colin Barker, Mar 16 2016
MAPLE
read("transforms") :
L := [1, seq(2^i, i=0..30)] ;
AERATE(L, 1) ;
BINOMIAL(%) ; # R. J. Mathar, Sep 26 2011
MATHEMATICA
LinearRecurrence[{3, -1, -1}, {1, 1, 2}, 50] (* Jean-François Alcover, Feb 25 2017 *)
PROG
(PARI) Vec((1-2*x)/((1-x)*(1-2*x-x^2)) + O(x^50)) \\ Colin Barker, Mar 16 2016
CROSSREFS
Cf. A001006.
Sequence in context: A343264 A018905 A024537 * A296201 A027826 A261664
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Dec 19 2009
STATUS
approved