login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171830
Triangle T(n, k) = (n+2)*c(n+2)*f(n+2)/(f(n-k+1)*f(k+1)) where f(n) = c(n)/(n*c(n-1)), c(n) = (n-3)! for n>2 and 1 otherwise, read by rows.
1
1, 2, 2, 3, 4, 3, 16, 24, 24, 16, 45, 144, 162, 144, 45, 192, 480, 1152, 1152, 480, 192, 1050, 2400, 4500, 9600, 4500, 2400, 1050, 6912, 15120, 25920, 43200, 43200, 25920, 15120, 6912, 52920, 112896, 185220, 282240, 220500, 282240, 185220, 112896, 52920
OFFSET
0,2
REFERENCES
Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 165-66
FORMULA
T(n, k) = (n+2)*c(n+2)*f(n+2)/(f(n-k+1)*f(k+1)) where f(n) = c(n)/(n*c(n-1)), c(n) = (n-3)! for n>2 and 1 otherwise.
EXAMPLE
Triangle begins as:
1;
2, 2;
3, 4, 3;
16, 24, 24, 16;
45, 144, 162, 144, 45;
192, 480, 1152, 1152, 480, 192;
1050, 2400, 4500, 9600, 4500, 2400, 1050;
6912, 15120, 25920, 43200, 43200, 25920, 15120, 6912;
52920, 112896, 185220, 282240, 220500, 282240, 185220, 112896, 52920;
MATHEMATICA
c[n_]:= If[n<=2, 1, (n-3)!]; f[n_]:= (c[n]/(n*c[n-1]));
T[n_, k_]:= c[n+2]*(n+2)*f[n+2]/(f[n-k+1]*f[k+1]);
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Apr 29 2021 *)
PROG
(Sage)
@CachedFunction
def c(n): return 1 if (n<3) else factorial(n-3)
def f(n): return c(n)/(n*c(n-1))
def T(n, k): return (n+2)*c(n+2)*f(n+2)/(f(k+1)*f(n-k+1))
flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 29 2021
CROSSREFS
Sequence in context: A164975 A253889 A228754 * A071506 A372645 A125920
KEYWORD
nonn,tabl,easy,less
AUTHOR
Roger L. Bagula, Dec 19 2009
EXTENSIONS
Edited by G. C. Greubel, Apr 29 2021
STATUS
approved