login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Nonnegative integers that can be made by using six sixes (6 6's) and the four basic operators {+, -, *, /}.
13

%I #38 Oct 12 2024 02:00:37

%S 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,23,24,25,27,

%T 28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,54,60,

%U 65,66,67,69,70,71,72,73,74,75,77,78,79,84,90,96,102,107

%N Nonnegative integers that can be made by using six sixes (6 6's) and the four basic operators {+, -, *, /}.

%C More integers can be made if other operators are allowed (i.e., 22 = 6!/(6*6)+(6+6)/6). The sequence is finite: a(198) = 6*6*6*6*6*6 = 46656 is the last term.

%C See A258068 ff. for the integers that can be generated with the four basic operators and 7 7's, 8 8's, 9 9's, etc...

%H Alois P. Heinz, <a href="/A171829/b171829.txt">Table of n, a(n) for n = 1..198</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Four_fours">Four Fours</a>

%e 49 is in the sequence: 49 = (6 + 6/6) * (6 + 6/6).

%p f:= proc(n) f(n):= `if`(n=1, {6}, {seq(seq(seq([x+y, x-y, x*y,

%p `if`(y=0, [][], x/y)][], y=f(n-j)), x=f(j)), j=1..n-1)})

%p end:

%p sort([select(z->z>=0 and is(z, integer), f(6))[]])[];

%p # _Alois P. Heinz_, Aug 04 2013

%t f[1] = {6}; f[n_] := f[n] = Union @ Flatten @ Table[Table[Table[{x+y, x-y, x*y, If[y == 0, Null, x/y]}, {y, f[n-j]}], {x, f[j]}], {j, 1, n-1}];

%t Sort[Select[f[6], # >= 0 && IntegerQ[#]&]] (* _Jean-François Alcover_, Jun 01 2018, after _Alois P. Heinz_ *)

%o (PARI) A171829(n=6, S=Vec([[n]],n))={for(n=2, n, S[n]=Set(concat(vector(n\2, k, concat([concat([[T+U, T-U, U-T, if(U, T/U), if(T, U/T), T*U] | T <- S[k]]) | U <- S[n-k]]))))); select(t-> t>=0 && denominator(t)==1,S[n])} \\ A171829() yields this sequence. Optional args allow to compute variants. - _M. F. Hasler_, Nov 24 2018

%Y Cf. A171826, A171827, A171828, A258068, A258069, A258070, A258071.

%Y Cf. A182002, A258097.

%K nonn,fini,full

%O 1,3

%A _Sergio Pimentel_, Dec 19 2009

%E Corrected and edited by _Alois P. Heinz_, Aug 03 2013