Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 May 11 2020 01:38:54
%S 1,25,20,30,24,20
%N Number of 5 X 5 permutation matrices such that the n-th matrix power is the least nonnegative power that gives the identity matrix.
%C The sum of the terms of this sequence is equal to the number of 5 X 5 permutation matrices: 5! = 120.
%C Number of elements of order n in symmetric group S_5. - _Alois P. Heinz_, Mar 30 2020
%e a(1) = 1 because there is only one matrix whose first power is the identity matrix (this is the identity matrix itself).
%t tab = {0, 0, 0, 0, 0, 0}; per =
%t Permutations[{1, 2, 3, 4, 5}]; zeromat = {}; Do[
%t AppendTo[zeromat, Table[0, {n, 1, 5}]], {m, 1, 5}]; unit =
%t IdentityMatrix[5]; s5 = {}; Do[s = zeromat;
%t Do[s[[m]][[per[[n]][[m]]]] = 1, {m, 1, 5}];
%t AppendTo[s5, s], {n, 1, 120}]; Do[
%t If[MatrixPower[s5[[n]], 1] == unit, tab[[1]] = tab[[1]] + 1,
%t If[MatrixPower[s5[[n]], 2] == unit, tab[[2]] = tab[[2]] + 1,
%t If[MatrixPower[s5[[n]], 3] == unit, tab[[3]] = tab[[3]] + 1,
%t If[MatrixPower[s5[[n]], 4] == unit, tab[[4]] = tab[[4]] + 1,
%t If[MatrixPower[s5[[n]], 5] == unit, tab[[5]] = tab[[5]] + 1,
%t If[MatrixPower[s5[[n]], 6] == unit,
%t tab[[6]] = tab[[6]] + 1]]]]]], {n, 1, 120}]; tab
%Y Row n=5 of A057731.
%K nonn,fini,full
%O 1,2
%A _Artur Jasinski_, Dec 18 2009
%E Name edited and terms corrected by _Alois P. Heinz_, Mar 30 2020