login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2^(n*(n-1)/2)*3^(n*(n+1)/2).
1

%I #13 Feb 13 2017 08:36:03

%S 1,3,54,5832,3779136,14693280768,342764853755904,47976111050506371072,

%T 40290721869103654477234176,203018823308689211155302473269248,

%U 6137885950748052085508841340966822477824,1113403476497577147178633950236927694314586243072

%N a(n) = 2^(n*(n-1)/2)*3^(n*(n+1)/2).

%H Vincenzo Librandi, <a href="/A171739/b171739.txt">Table of n, a(n) for n = 0..50</a>

%F a(-n) = A081955(n).

%F a(n+1)*a(n-1) = 6*a(n)^2.

%F G.f.: 1 / (1 - 6^1 / 2 * x / (1 - (6^1 - 1) * 6^1 / 2 * x / (1 - 6^2 / 2 * x / (1 - (6^2 - 1) * 6^2 / 2 * x / ... )))). - _Michael Somos_, Jan 03 2013

%e 1 + 3*x + 54*x^2 + 5832*x^3 + 3779136*x^4 + 14693280768*x^5 + 342764853755904*x^6 + ...

%p A171739:=n->2^(n*(n-1)/2)*3^(n*(n+1)/2): seq(A171739(n), n=0..15); # _Wesley Ivan Hurt_, Feb 12 2017

%t Table[2^(n*(n-1)/2) * 3^(n*(n+1)/2), {n, 0, 20}] (* _Vincenzo Librandi_, Jan 03 2013 *)

%o (PARI) {a(n) = 2^(n*(n-1)/2) * 3^(n*(n+1)/2)}

%Y Cf. A081955.

%K nonn,easy

%O 0,2

%A _Michael Somos_, Dec 17 2009