login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1, then partial products of Product_{n>=1} (p(n)/p(n-1)*p(n)/p(n-1)) = 1*1*1*(2)*(2)*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*...*; p = partition numbers, A000041 starting (1, 2, 3, 5, ...).
2

%I #11 Feb 09 2022 09:04:01

%S 1,1,1,2,4,6,9,15,25,35,49,77,121,165,225,330,484,660,900,1260,1764,

%T 2352,3136,4312,5929,7777,10201,13635,18225,23760,30976,40656,53361,

%U 68607,88209,114345,148225,188650,240100,307230

%N a(1) = 1, then partial products of Product_{n>=1} (p(n)/p(n-1)*p(n)/p(n-1)) = 1*1*1*(2)*(2)*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*...*; p = partition numbers, A000041 starting (1, 2, 3, 5, ...).

%C A006498 = analogous sequence using the Fibonacci numbers.

%C A171645 = .............................Primes, analogous formula.

%C A010551 = .............................Factorial numbers, analogous formula.

%F a(1) = 1, then partial products of Product_{n>=1} (p(n)/p(n-1)*p(n)/p(n-1)) = 1*1*1*(2)*(2)*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*...; p = partition numbers, A000041 starting (1, 2, 3, 5, ...).

%e a(12) = 77 = 1*1*1*2*2*(3/2)*(3/2)*(5/3)*(5/3)*(7/5)*(7/5)*(11/7).

%p A171646t := proc(n)

%p local nh;

%p nh := floor(n/2) ;

%p combinat[numbpart](nh)/combinat[numbpart](nh-1) ;

%p end proc:

%p A171646 := proc(n)

%p mul(A171646t(i),i=2..n) ;

%p end proc:

%p 1,seq(A171646(n),n=2..40) ; # _R. J. Mathar_, Jul 21 2015

%Y Cf. A000041, A171645, A006498, A010551.

%K nonn

%O 1,4

%A _Gary W. Adamson_, Dec 13 2009

%E Corrected by _R. J. Mathar_, Jul 21 2015