login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A171605 Coefficients of Hankel moment polynomials for c=1/2:f(a,b) = Gamma[a + b]/Gamma[a] p(x,n)=Sum[Binomial(n, k)*(f(c, n)/(f(c, n - k)*f(c, k)))*x^k, {k, 0, n}] 0
1, 1, -1, -1, 1, 1, 2, -17, 28, -17, 2, 1, 1, 9, -60, 116, -66, -66, 116, -60, 9, 1, 1, 20, -126, 196, 239, -1240, 1820, -1240, 239, 196, -126, 20, 1, 1, 35, -195, 15, 2205, -7001, 9785, -4845, -4845, 9785, -7001, 2205, 15, -195, 35, 1, 1, 54, -231, -880 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

Row sums are zero except for n=0.

Other Hankel moments are:

c = 2 : A001263, Narayana

;c = 1 : A008459. binomial squared.

REFERENCES

Philip Feinsilver and Rene Schott, Algebraic Structure and Operator Calculus; Volume I: Representations and Probability Theory,Kluwer,London,1993, ISBN 0-7923-2116-2,page 7

LINKS

Table of n, a(n) for n=0..54.

FORMULA

f(a,b) = Gamma[a + b]/Gamma[a]

p(x,n)=Sum[Binomial(n, k)*(f(c, n)/(f(c, n - k)*f(c, k)))*x^k, {k, 0, n}]

EXAMPLE

{1},

{1, -1, -1, 1},

{1, 2, -17, 28, -17, 2, 1},

{1, 9, -60, 116, -66, -66, 116, -60, 9, 1},

{1, 20, -126, 196, 239, -1240, 1820, -1240, 239, 196, -126, 20, 1},

{1, 35, -195, 15, 2205, -7001, 9785, -4845, -4845, 9785, -7001, 2205, 15, -195, 35, 1},

{1, 54, -231, -880, 8052, -21912, 22276, 20976, -95634, 134596, -95634, 20976, 22276, -21912, 8052, -880, -231, 54, 1},

{1, 77, -182, -3094, 19929, -43043, -10920, 268568, -665406, 810810, -376740, -376740, 810810, -665406, 268568, -10920, -43043, 19929, -3094, -182, 77, 1},

{1, 104, 20, -7272, 37762, -42120, -270140, 1299080, -2608913, 2193808, 1776424, -7637904, 10518300, -7637904, 1776424, 2193808, -2608913, 1299080, -270140, -42120, 37762, -7272, 20, 104, 1},

{1, 135, 459, -13923, 55998, 59058, -1151070, 4053582, -6097509, -1814851, 27460881, -59839065, 67546644, -30260340, -30260340, 67546644, -59839065, 27460881, -1814851, -6097509, 4053582, -1151070, 59058, 55998, -13923, 459, 135, 1},

{1, 170, 1235, -23180, 59565, 411502, -3254225, 8979400, -4878915, -43714630, 159116983, -271019060, 204302345, 149970990, -623782445, 847660528, -623782445, 149970990, 204302345, -271019060, 159116983, -43714630, -4878915, 8979400, -3254225, 411502, 59565, -23180, 1235, 170, 1}

MATHEMATICA

f[a_, b_] = Gamma[a + b]/Gamma[a]

c = 1/2;

p[x_, n_] = Sum[Binomial[n, k]*(f[c, n]/(f[ c, n - k]*f[c, k]))*x^k, {k, 0, n}]

Table[CoefficientList[p[x, n], x], {n, 0, 10}]

Flatten[%]

CROSSREFS

A001263, A008459

Sequence in context: A284646 A270344 A300134 * A018759 A132146 A139827

Adjacent sequences:  A171602 A171603 A171604 * A171606 A171607 A171608

KEYWORD

sign,uned

AUTHOR

Roger L. Bagula, Dec 12 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 25 08:59 EST 2021. Contains 340416 sequences. (Running on oeis4.)