Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 May 13 2016 05:30:06
%S 1,1,3,3,3,6,6,6,6,10,10,10,10,10,15,15,15,15,15,10,21,21,21,21,21,15,
%T 21,28,28,28,28,28,21,28,28,36,36,36,36,36,28,36,36,28,45,45,45,45,45,
%U 28,45,45,28,45,55,55,55,55,55,45,55,55,45,55,55,66,66,66,66,66,55,66
%N The largest part in the set of all {x,y,z} for any partitioning n=x+y+z into three triangular numbers x, y and z.
%C Write down all possible n=A000217(i)+A000217(j)+A000217(k) with 0<=i<=j<=k and set a(n) to the maximum term found on the right hand sides.
%H Giovanni Resta, <a href="/A171601/b171601.txt">Table of n, a(n) for n = 1..10000</a>
%e n=8: 8=1+1+6 =A000217(1)+A000217(1)+A000217(3), admits only one partitioning, so a(8)=max(1,6)=6.
%e n=17: 17 = 1+1+15 = 1+6+10. a(17) = max(1,15,6,10) = 15.
%e n=18: 18= 0+3+15 = 6+6+6. a(18) = max(0,3,15,6) = 15.
%e n=20: 20= 0+10+10 (one partitioning only), a(20)= max(0,10)=10.
%e n=21: 21= 1+10+10 = 0+0+21 = 0+6+15 = 3+3+15. a(21) = max(1,10,0,21,6,15,3) = 21.
%t a[n_] := Max@ Flatten@ IntegerPartitions[ n, {3}, (# (# + 1)/2) & /@ Range[0, Sqrt[8*n + 1]/2]]; Array[a, 100] (* _Giovanni Resta_, May 12 2016 *)
%K easy,nonn
%O 1,3
%A _Tanya Khovanova_ and _R. J. Mathar_, Dec 12 2009