Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Nov 07 2014 05:32:22
%S 1,0,2,-1,-1,2,2,0,-6,-36,-2,24,4,3,69,57,-273,-272,80,92,4,0,30,2280,
%T 6860,-760,-9162,-2432,1800,608,8,-15,-3555,-25140,-3900,147765,
%U 137145,-79582,-98934,-764,13396,1896,8,0,-210,-151620,-2213610,-4641840
%N Coefficients of partition Hermite-MacMahon polynomials: p(x,n)= If[n == 0, 1, HermiteH[n, x]*Sum[MacMahon[n-1, k-1]*x^(k - 1), {k, 1, n}]/2^Floor[n/2]]
%C Row sums are:
%C {1, 2, 2, -16, -240, -768, 88320, 2672640, -66447360, -6915686400, 47749201920,...}
%C These polynomials are suggested by Gaussian limit of the Eulerian numbers in Analytic Combinatorics.
%C A quantum polynomial like:
%C p(x,n,m)= If[n == 0, 1, HermiteH[m, x]*Sum[Binomial[n-1, k-1]*x^(k - 1), {k, 1, n}]/2^Floor[n/2]]
%C might be a wave function for a system of Hamiltonian equations.
%C I set the Mathematica up so the Eulerian numbers were included in the general form.
%H Philippe Flajolet and Robert Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html">Analytic Combinatorics</a>, Cambridge Univ. Press, 2009, page 695.
%F p(x,n)= If[n == 0, 1, HermiteH[n, x]*Sum[MacMahon[n-1, k-1]*x^(k - 1), {k, 1, n}]/2^Floor[n/2]]
%e {1},
%e {0, 2},
%e {-1, -1, 2, 2},
%e {0, -6, -36, -2, 24, 4},
%e {3, 69, 57, -273, -272, 80, 92, 4},
%e {0, 30, 2280, 6860, -760, -9162, -2432, 1800, 608, 8},
%e {-15, -3555, -25140, -3900, 147765, 137145, -79582, -98934, -764, 13396, 1896, 8},
%e {0, -210, -151620, -2213610, -4641840, 2213862, 9617244, 2656642, -3641272, -1602116, 255472, 168520, 11552, 16},
%e {105, 228795, 6368145, 25440555, -23680125, -209967975, -166986869, 166727449, 202749808, -7192048, -55377080, -9430760, 3667472, 970288, 34864, 16},
%e {0, 1890, 12383280, 626741640, 4664172240, 7164455004, -7808843952, -21932529768, -5001731280, 12274911266, 6051172608, -1679406832, -1332183424, -41405040, 75755264, 10611008, 209664, 32},
%e {-945, -18590985, -1659731850, -20328123690, -48998162430, 139296892770, 613311715800, 380874591720, -660633807105, -748616078025, 75243899642, 312084016906, 59238930280, -40430975576, -13309362512, 956665648, 680490544, 56202160, 629536, 32}
%t Clear[A, p, n, k]
%t m = 2;
%t A[n_, 1] := 1 A[n_, n_] := 1
%t A[n_, k_] := (m*n - m*k + 1)A[n - 1, k - 1] + (m*k - (m - 1))A[n - 1, k]
%t a = Table[A[n, k], {n, 10}, {k, n}]
%t p[x_, n_] := If[n == 0, 1, HermiteH[ n, x]*Sum[a[[n, k]]*x^(k - 1), {k, 1, n}]/2^Floor[n/2]]
%t b = Table[CoefficientList[p[x, n], x], {n, 0, 10}]
%t Flatten[b]
%Y A171229
%K sign,uned
%O 0,3
%A _Roger L. Bagula_, Dec 11 2009