Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Sep 08 2022 08:45:50
%S 0,1,3,-1,7,-9,23,-41,87,-169,343,-681,1367,-2729,5463,-10921,21847,
%T -43689,87383,-174761,349527,-699049,1398103,-2796201,5592407,
%U -11184809,22369623,-44739241,89478487,-178956969,357913943,-715827881
%N Inverse binomial transform of A084640.
%C a(n) and differences are
%C 0, 1, 3, -1, 7, -9,
%C 1, 2, -4, 8, -16, 32, =(-1)^(n+1) * A171449(n),
%C 1, -6, 12, -24, 48, -96,
%C -7, 18, -36, 72, -144, 288,
%C 25, -54, 108, -216, 432, -864,
%C Vertical: 1) 0 followed with A168589(n).
%C 2) (-1 followed with A008776(n) ) signed. See A025192(n).
%C Main diagonal: see A167747(1+n). - _Paul Curtz_, Jun 16 2011
%H Vincenzo Librandi, <a href="/A171501/b171501.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (-1,2).
%F a(n) = A140966(n), n>0.
%F G.f.: x*(1+4*x) / ( (1+2*x)*(1-x) ). - _R. J. Mathar_, Jun 14 2011
%F a(1+n)= (-1)^(1+n) * A001045(1+n) + 2. - _Paul Curtz_, Jun 16 2011
%t CoefficientList[Series[x*(1 + 4*x)/((1 + 2*x)*(1 - x)), {x, 0, 30}], x]
%t LinearRecurrence[{-1,2},{0,1,3},40] (* _Harvey P. Dale_, Jan 14 2020 *)
%o (Magma) I:=[0, 1, 3]; [n le 3 select I[n] else -Self(n-1) + 2*Self(n-2): n in [1..40]]; // _Vincenzo Librandi_, Oct 18 2012
%K easy,sign
%O 0,3
%A _Paul Curtz_, Dec 10 2009
%E Mathematica program by _Olivier Gérard_, Jul 06 2011