login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 6*a(n-1)-8*a(n-2)+3 for n > 1; a(0) = 1, a(1) = 8.
1

%I #15 Sep 18 2022 19:29:56

%S 1,8,43,197,841,3473,14113,56897,228481,915713,3666433,14672897,

%T 58705921,234852353,939466753,3757981697,15032156161,60129083393,

%U 240517251073,962070839297,3848287027201,15393155448833,61572636475393

%N a(n) = 6*a(n-1)-8*a(n-2)+3 for n > 1; a(0) = 1, a(1) = 8.

%H Vincenzo Librandi, <a href="/A171479/b171479.txt">Table of n, a(n) for n = 0..500</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-14,8)

%F a(n) = (2-7*2^n+7*4^n)/2.

%F G.f.: (1+x+x^2)/((1-x)*(1-2*x)*(1-4*x)).

%p A171479:=n->(2-7*2^n+7*4^n)/2: seq(A171479(n), n=0..30); # _Wesley Ivan Hurt_, Apr 28 2017

%t LinearRecurrence[{7,-14,8},{1,8,43},30] (* _Harvey P. Dale_, Sep 18 2022 *)

%o (PARI) {m=23; v=concat([1, 8], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]+3); v}

%o (Magma) [(2-7*2^n+7*4^n)/2: n in [0..30]]; // _Vincenzo Librandi_, Jul 18 2011

%Y Cf. A171472, A171473, A171478.

%K nonn,easy

%O 0,2

%A _Klaus Brockhaus_, Dec 09 2009