login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 6*a(n-1) - 8*a(n-2)-3 for n > 1; a(0) = 35, a(1) = 135.
12

%I #20 Sep 27 2023 16:43:03

%S 35,135,527,2079,8255,32895,131327,524799,2098175,8390655,33558527,

%T 134225919,536887295,2147516415,8590000127,34359869439,137439215615,

%U 549756338175,2199024304127,8796095119359,35184376283135

%N a(n) = 6*a(n-1) - 8*a(n-2)-3 for n > 1; a(0) = 35, a(1) = 135.

%C Related to Reverse and Add trajectory of 22 in base 2: A061561(4*n+3) = 3*a(n).

%H Vincenzo Librandi, <a href="/A171473/b171473.txt">Table of n, a(n) for n = 0..500</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-14,8).

%F a(n) = 32*4^n + 4*2^n - 1.

%F G.f.: (35-110*x+72*x^2)/((1-x)*(1-2*x)*(1-4*x)).

%F a(n) = A092431(n+3).

%F a(n+1) - a(n) = A049775(n+5).

%F E.g.f.: exp(x)*(32*exp(3*x) + 4*exp(x) - 1). - _Stefano Spezia_, Sep 27 2023

%o (PARI) {m=20; v=concat([35, 135], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]-3); v}

%o (Magma) [32*4^n+4*2^n-1: n in [0..30]]; // _Vincenzo Librandi_, Jul 18 2011

%Y Cf. A061561, A092431, A049775, A171470, A171471, A171472.

%K nonn,easy

%O 0,1

%A _Klaus Brockhaus_, Dec 09 2009