|
|
A171443
|
|
Expansion of (1+x)^8/(1-x).
|
|
9
|
|
|
1, 9, 37, 93, 163, 219, 247, 255, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
a(n)=2^8=256 for n>=8. We observe that this sequence is the transform of A171442 by T such that: T(u_0,u_1,u_2,u_3,u_4,u_5,...)=(u_0,u_0+u_1,u_1+u_2,u_2+u_3,u_3+u_4,...).
|
|
REFERENCES
|
Richard Choulet, Une nouvelle formule de combinatoire, Mathématique et Pédagogie, 157 (2006), p. 53-60.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1).
|
|
FORMULA
|
With m=9, a(n) = Sum_{k=0..floor(n/2)} binomial(m,n-2*k).
|
|
EXAMPLE
|
a(7) = C(9,7-0)+C(9,7-2)+C(9,7-4)+C(9,7-6) = 36+126+84+9 = 255.
|
|
MAPLE
|
m:=9:for n from 0 to 40 do a(n):=sum('binomial(m, n-2*k)', k=0..floor(n/2)): od : seq(a(n), n=0..40);
|
|
MATHEMATICA
|
CoefficientList[Series[(1+x)^8/(1-x), {x, 0, 80}], x] (* Harvey P. Dale, Jul 22 2014 *)
|
|
CROSSREFS
|
Cf. A040000, A113311, A115291, A171418, A171440, A171441, A171442.
Sequence in context: A200774 A273220 A022276 * A341403 A320696 A299290
Adjacent sequences: A171440 A171441 A171442 * A171444 A171445 A171446
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Richard Choulet, Dec 09 2009
|
|
EXTENSIONS
|
Definition rewritten by Bruno Berselli, Sep 23 2011
|
|
STATUS
|
approved
|
|
|
|