%I #32 Feb 19 2022 11:17:04
%S 2,0,8,14,63,62,252,254,766,2040,4095,4094,12286,32750,32764,65534,
%T 262141,262140,1048574,2097150,7340030,8388602,25165820,33554428,
%U 67108860,134217696,268435420,268435452,1073741790,1073741820,3221225470,8589934590
%N Smallest number m such that exactly n editing steps (insert or substitute) are necessary to transform the binary representation of m into the least prime not less than m.
%H Michael Gilleland, <a href="https://people.cs.pitt.edu/~kirk/cs1501/Pruhs/Spring2006/assignments/editdistance/Levenshtein%20Distance.htm">Levenshtein Distance</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Levenshtein_distance">Levenshtein Distance</a>
%F A171400(a(n)) = n.
%F BinaryLevenshteinDistance(a(n), A007918(a(n))) = n.
%F For n > 1, A007918(a(n)) must have >= n+1 digits and empirically a(n) >= A151799(A007918(2^(n+1))) + 1 - _Michael S. Branicky_, Feb 05 2022
%o (Python)
%o from Levenshtein import distance # after pip install python-Levenshtein
%o from sympy import nextprime
%o def a(n):
%o m = 0
%o while True:
%o b = bin(m)[2:]
%o if distance(b, bin(nextprime(m-1))[2:]) == n:
%o return m
%o m += 1
%o print([a(n) for n in range(1, 16)]) # _Michael S. Branicky_, Feb 05 2022
%Y Cf. A007918, A151799, A171400.
%K nonn,base,more
%O 0,1
%A _Reinhard Zumkeller_, Dec 08 2009
%E a(10)-a(26) from _Michael S. Branicky_, Feb 05 2022
%E a(27)-a(29) from _Michael S. Branicky_, Feb 06 2022
%E a(30)-a(31) from _Michael S. Branicky_, Feb 19 2022