login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Numerator of 1/(2*n)^2 - 1/(3*n)^2 for n > 0, a(0) = 1.
1

%I #22 Dec 12 2023 07:39:09

%S 1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,

%T 5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,

%U 5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5

%N a(n) = Numerator of 1/(2*n)^2 - 1/(3*n)^2 for n > 0, a(0) = 1.

%C The diagonal of a table of numerators of the Rydberg-Ritz spectrum of hydrogen:

%C 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012

%C 0, 5, 3, 21, 2, 45, 15, 77, 6, 117, 35, ... A061037

%C 0, 9, 5, 33, 3, 65, 21, 105, 1, 153, 45, ... A061041

%C 0, 13, 7, 5, 4, 85, 1, 133, 10, 7, 55, ... A061045

%C 0, 17, 9, 57, 5, 105, 33, 161, 3, 225, 65, ... A061049

%C 0, 21, 11, 69, 6, 1, 39, 189, 14, 261, 3, ...

%C 0, 25, 13, 1, 7, 145, 5, 217, 1, 11, 85, ...

%C 0, 29, 15, 93, 8, 165, 51, 5, 18, 333, 95, ...

%C 0, 33, 17, 105, 9, 185, 57, 273, 5, 369, 105, ...

%C 0, 37, 19, 13, 10, 205, 7, 301, 22, 5, 115, ...

%C 0, 41, 21, 129, 11, 9, 69, 329, 3, 441, 1, ...

%C In that respect, constructed similar to A144437.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,1).

%F a(n) = numerator of 5/(6*n)^2 .

%F Period 5: repeat [1,5,5,5,5].

%F G.f.: (1 + 5*x + 5*x^2 + 5*x^3 + 5*x^4)/((1-x)*(1 + x + x^2 + x^3 + x^4)).

%F a(n) = 1 + 4*sign(n mod 5). - _Wesley Ivan Hurt_, Sep 26 2018

%F a(n) = (21-8*cos(2*n*Pi/5)-8*cos(4*n*Pi/5))/5. - _Wesley Ivan Hurt_, Sep 27 2018

%t Table[If[n==0,1,Numerator[5/(6*n)^2]], {n,0,100}] (* _G. C. Greubel_, Sep 20 2018 *)

%o (PARI) concat([1], vector(100, n, numerator(5/(6*n)^2))) \\ _G. C. Greubel_, Sep 20 2018

%o (Magma) [1] cat [Numerator(5/(6*n)^2): n in [1..100]]; // _G. C. Greubel_, Sep 20 2018

%Y Cf. A171373 (binomial transform), A171408, A105371.

%K nonn,easy,frac

%O 0,2

%A _Paul Curtz_, Dec 07 2009

%E Edited by _R. J. Mathar_, Dec 15 2009