login
a(n) = Numerator of 1/(2*n)^2 - 1/(3*n)^2 for n > 0, a(0) = 1.
1

%I #22 Dec 12 2023 07:39:09

%S 1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,

%T 5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,

%U 5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5,1,5,5,5,5

%N a(n) = Numerator of 1/(2*n)^2 - 1/(3*n)^2 for n > 0, a(0) = 1.

%C The diagonal of a table of numerators of the Rydberg-Ritz spectrum of hydrogen:

%C 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012

%C 0, 5, 3, 21, 2, 45, 15, 77, 6, 117, 35, ... A061037

%C 0, 9, 5, 33, 3, 65, 21, 105, 1, 153, 45, ... A061041

%C 0, 13, 7, 5, 4, 85, 1, 133, 10, 7, 55, ... A061045

%C 0, 17, 9, 57, 5, 105, 33, 161, 3, 225, 65, ... A061049

%C 0, 21, 11, 69, 6, 1, 39, 189, 14, 261, 3, ...

%C 0, 25, 13, 1, 7, 145, 5, 217, 1, 11, 85, ...

%C 0, 29, 15, 93, 8, 165, 51, 5, 18, 333, 95, ...

%C 0, 33, 17, 105, 9, 185, 57, 273, 5, 369, 105, ...

%C 0, 37, 19, 13, 10, 205, 7, 301, 22, 5, 115, ...

%C 0, 41, 21, 129, 11, 9, 69, 329, 3, 441, 1, ...

%C In that respect, constructed similar to A144437.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,1).

%F a(n) = numerator of 5/(6*n)^2 .

%F Period 5: repeat [1,5,5,5,5].

%F G.f.: (1 + 5*x + 5*x^2 + 5*x^3 + 5*x^4)/((1-x)*(1 + x + x^2 + x^3 + x^4)).

%F a(n) = 1 + 4*sign(n mod 5). - _Wesley Ivan Hurt_, Sep 26 2018

%F a(n) = (21-8*cos(2*n*Pi/5)-8*cos(4*n*Pi/5))/5. - _Wesley Ivan Hurt_, Sep 27 2018

%t Table[If[n==0,1,Numerator[5/(6*n)^2]], {n,0,100}] (* _G. C. Greubel_, Sep 20 2018 *)

%o (PARI) concat([1], vector(100, n, numerator(5/(6*n)^2))) \\ _G. C. Greubel_, Sep 20 2018

%o (Magma) [1] cat [Numerator(5/(6*n)^2): n in [1..100]]; // _G. C. Greubel_, Sep 20 2018

%Y Cf. A171373 (binomial transform), A171408, A105371.

%K nonn,easy,frac

%O 0,2

%A _Paul Curtz_, Dec 07 2009

%E Edited by _R. J. Mathar_, Dec 15 2009