login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171237
a(0)=2, a(1)=3, a(n) = 3 + a(n-1) + a(n-2) for n >= 2.
1
2, 3, 8, 14, 25, 42, 70, 115, 188, 306, 497, 806, 1306, 2115, 3424, 5542, 8969, 14514, 23486, 38003, 61492, 99498, 160993, 260494, 421490, 681987, 1103480, 1785470, 2888953, 4674426, 7563382, 12237811, 19801196, 32039010, 51840209, 83879222
OFFSET
0,1
COMMENTS
a(n) gives the time complexity of a recursive Fibonacci algorithm.
FORMULA
a(0)=2, a(1)=3, a(n) = 3 + a(n-1) + a(n-2) n >= 2.
From R. J. Mathar, Dec 06 2009: (Start)
a(n) = 2*a(n-1) - a(n-3) = A022095(n+1) - 3.
G.f.: (2-x+2*x^2)/((x-1)*(x^2+x-1)). (End)
MATHEMATICA
LinearRecurrence[{2, 0, -1}, {2, 3, 8}, 50] (* Harvey P. Dale, Mar 19 2020 *)
CROSSREFS
Sequence in context: A368855 A022951 A247124 * A173149 A128305 A328881
KEYWORD
nonn,easy
AUTHOR
Manfred Jackel (jkl(AT)uni-koblenz.de), Dec 05 2009
STATUS
approved