login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of irreducible rational curves maximally tangent to a line.
2

%I #47 Feb 20 2024 14:40:42

%S 1,1,7,138,5477,367640,37541883,5432772352,1059075055273,

%T 267757626501504,85244466165571535,33379687015338236672,

%U 15770655073870516443597,8847780392111931116474368,5815426547948880787678282627,4426738320076692932937846865920,3863757059392099045703984747480273

%N Number of irreducible rational curves maximally tangent to a line.

%C Possibly related to left column of table 2 in Bousseau-Wu. - _F. Chapoton_, Feb 20 2024

%H Gheorghe Coserea, <a href="/A171106/b171106.txt">Table of n, a(n) for n = 1..222</a>

%H Pierrick Bousseau and Longting Wu, <a href="https://arxiv.org/abs/2303.00503">All-Genus WDVV Recursion, Quivers, and BPS Invariants</a>, arXiv:2303.00503, 2023.

%H Sergey Fomin and Grigory Mikhalkin, <a href="https://arxiv.org/abs/0906.3828">Labeled floor diagrams for plane curves</a>, arXiv:0906.3828 [math.AG], 2009-2010.

%F Sergey Fomin and Grigory Mikhalkin give a recurrence.

%F From _Gheorghe Coserea_, Jan 04 2018: (Start)

%F (n-1)*(2*n-1)*n^2 * a(n) = 2*s1(n) - s2(n) - s3(n) + 5*s4(n) - 3*s5(n), where s1(n) = Sum_{i+j+k=n} i^3*j^3*k^3 * (2*n)!/((2*i)!*(2*j)!*(2*k)!) * a(i)*a(j)*a(k), s2(n) = Sum_{i+j+k=n} i^3*j^3*k^2 * (2*n)!/((2*i)!*(2*j)!*(2*k)!) * a(i)*a(j)*a(k), s3(n) = Sum_{i+j=n} i^3*(i-1)*j^2 * (2*n)!/((2*i)!*(2*j)!) * a(i)*a(j), s4(n) = Sum_{i+j=n} i^3*j^3 * (2*n)!/((2*i)!*(2*j)!) * a(i)*a(j), s5(n) = Sum_{i+j=n} i^3*j^2 * (2*n)!/((2*i)!*(2*j)!) * a(i)*a(j) , n>=3.

%F x*(4*y' - exp(y) - x*exp(y)*y') = 2*y, where y(x) = Sum_{n>=1} n^2*a(n)/(2*n)! * x^n. (eqn. (4.8))

%F (End)

%F a(n) ~ c * d^n * n^(2*n-3), where d = 0.520598617698520888136853407904080840281... and c = 1.8295420351460716385409955906837076169... - _Vaclav Kotesovec_, Oct 24 2018

%t terms = 17; Clear[a]; a[1] = a[2] = 1;

%t y[x_] = Sum[d^2 a[d] x^d/(2d)!, {d, 1, terms+1}];

%t f = x (4y'[x] - E^y[x] - x E^y[x] y'[x]) - 2y[x] + O[x]^(terms+1);

%t Solve[0 == Thread[CoefficientList[f, x] ]][[1]] /. Rule -> Set;

%t Array[a, terms] (* _Jean-François Alcover_, Oct 24 2018 *)

%o (PARI)

%o runs(v) = {

%o my(a=List(),j=1,k=1);

%o for (i=2, #v, if (v[i] == v[j], k++, listput(a,k); k=1; j=i));

%o listput(a,k); Vec(a);

%o };

%o M(v) = vecsum(v)! \ prod(k=1, #v, v[k]!);

%o A171106_seq(N) = {

%o my(a = vector(N),s,p,q); a[1]=1; a[2]=1;

%o for (n=2, N-1, a[n+1] = sum(k=1, n, s=0;

%o forpart(p=n, q = prod(i=1, k, p[i]^2*a[p[i]]/(2*p[i])!);

%o s += q * M(runs(p)), , [k,k]); (2*n)!/k! * s)); a;

%o };

%o A171106_seq(17)

%o \\ test: N=33; a=A171106_seq(N); y='x*Ser(vector(N, n, n^2*a[n]/(2*n)!)); x*(4*y' - exp(y) - x*exp(y)*y') == 2*y

%o (PARI)

%o A171106_seq(N) = {

%o my(a=vector(N), s1, s2, s3, s4=vector(N), s5);

%o a[1]=1; a[2]=1; s4[1]=0; s4[2]=6;

%o for (n=3, N,

%o s4[n] = sum(k=1, n-1, k^3*(n-k)^3 * binomial(2*n, 2*k) * a[k]*a[n-k]);

%o s1 = sum(k=1, n-1, k^3*binomial(2*n, 2*k) * s4[n-k]*a[k]);

%o s2 = sum(k=1, n-1, k^2*binomial(2*n, 2*k) * s4[n-k]*a[k]);

%o s3 = sum(k=1, n-1, k^3*(k-1)*(n-k)^2 * binomial(2*n, 2*k) * a[k]*a[n-k]);

%o s5 = sum(k=1, n-1, k^3*(n-k)^2 * binomial(2*n, 2*k) * a[k]*a[n-k]);

%o a[n] = (2*s1 - s2 - s3 + 5*s4[n] - 3*s5) / ((n-1)*(2*n-1)*n^2)); a;

%o };

%o A171106_seq(17) \\ _Gheorghe Coserea_, Jan 04 2018

%Y Cf. A171107.

%K nonn

%O 1,3

%A _N. J. A. Sloane_, Sep 27 2010

%E Terms a(15) and beyond from _Gheorghe Coserea_, Jan 02 2018