Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #50 Mar 31 2022 22:00:22
%S 1,1,1,2,5,13,37,112,363,1235,4427,16526,64351,259471,1083935,4668704,
%T 20732609,94607409,443476993,2130346450,10482534517,52740593933,
%U 271186949333,1423127827792,7618169603035,41554791114643,230857090312059,1305086617517534
%N a(n+1) = a(n) + n*a(n-1) - a(n-2) + a(n-3).
%C The number of different RNA structures for sequences of length n.
%C a(n) = number of involutions on [n] that contain no adjacent transpositions. For example, a(3) = 2 counts (in cycle form) the identity and (1,3), but not (1,2) or (2,3) because they are adjacent transpositions. - _David Callan_, Nov 11 2012
%C Conjecture: a(n)/A000085(n) -> 1/e as n -> inf. In other words, the asymptotic proportion of involutions that contain no adjacent transpositions is conjecturally = 1/e. - _David Callan_, Nov 11 2012
%C Number of matchings (i.e. Hosoya index) in the complement of P_n where P_n is the n-path graph. - _Andrew Howroyd_, Mar 15 2016
%D M. Nebel, Combinatorial Properties of RNA secondary Structures, 2001.
%D M. Regnier, Generating Functions in Computational Biology, INRIA, March 3, 1997.
%H Alois P. Heinz, <a href="/A170941/b170941.txt">Table of n, a(n) for n = 0..500</a>
%H Mohammad Ganjtabesh, Armin Morabbi and Jean-Marc Steyaert, <a href="http://www.lifl.fr/SEQUOIA/Arena/Presentations/Ganjtabesh.pdf">Enumerating the number of RNA structures</a> [See slide 8]
%H Juan B. Gil and Luiz E. Lopez, <a href="https://arxiv.org/abs/2203.10589">Enumeration of symmetric arc diagrams</a>, arXiv:2203.10589 [math.CO], 2022.
%H I. L. Hofacker, P. Schuster and P. F. Stadler, <a href="http://dx.doi.org/10.1016/S0166-218X(98)00073-0">Combinatorics of RNA secondary structures</a>, Discrete Appl. Math., 88, 1998, 207-237.
%H P. Stadler and C. Haslinger, <a href="https://doi.org/10.1006/bulm.1998.0085">RNA structures with pseudo-knots: Graph theoretical and combinatorial properties</a>, Bull. Math. Biol., Preprint 97-03-030, 1997. See Theorem 5, p. 36 for the titular recurrence.
%H M. S. Waterman, <a href="https://dornsife.usc.edu/assets/sites/516/docs/papers/msw_papers/msw-026.pdf">Secondary structure of single-stranded nucleic acids</a>, Studies in Foundations and Combinatorics, Vol. 1, pp. 167-212, 1978.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/IndependentEdgeSet.html">Independent Edge Set</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Matching.html">Matching</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PathComplementGraph.html">Path Complement Graph</a>
%F a(n) ~ exp(sqrt(n) - n/2 - 5/4) * n^(n/2) / sqrt(2) * (1 + 31/(24*sqrt(n))). - _Vaclav Kotesovec_, Sep 10 2014
%p A170941 := proc(n) option remember; if n < 4 then [1$3,2][n+1] ; else procname(n-1)+(n-1)*procname(n-2)-procname(n-3)+procname(n-4) ; end if; end proc: seq(A170941(n), n=0..40) ; # _R. J. Mathar_, Feb 20 2010
%t a[0] = a[1] = a[2] = 1; a[3] = 2; a[n_] := a[n] = a[n-1] + (n-1) a[n-2] - a[n-3] + a[n-4];
%t Table[a[n], {n, 0, 27}] (* _Jean-François Alcover_, Dec 30 2017 *)
%t RecurrenceTable[{a[n + 1] == a[n] + n a[n - 1] - a[n - 2] + a[n - 3], a[0] == a[1] == a[2] == 1, a[3] == 2}, a, {n, 20}] (* _Eric W. Weisstein_, Apr 12 2018 *)
%t nxt[{n_,a_,b_,c_,d_}]:={n+1,b,c,d,d+(n+1)c-b+a}; NestList[nxt,{2,1,1,1,2},30][[All,2]] (* _Harvey P. Dale_, Feb 16 2020 *)
%o (PARI) a=vector(50); a[1]=a[2]=1;a[3]=2; a[4]=5; for(n=5, #a, a[n]=a[n-1]+(n-1)*a[n-2]-a[n-3]+a[n-4]); concat(1, a) \\ _Altug Alkan_, Apr 12 2018
%Y Column k=0 of A217876.
%Y Column k=1 of A239144.
%K nonn,easy
%O 0,4
%A _Barry Cipra_, Feb 09 2010
%E More terms from _R. J. Mathar_, Feb 20 2010
%E a(0)=1 inserted and program adapted by _Alois P. Heinz_, Mar 10 2014