Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Aug 29 2022 04:41:06
%S 1,63,2205,56595,1188495,21630609,353299947,5299499205,74192988870,
%T 980996186170,12360551945742,149450309889426,1743586948709970,
%U 19715944727720430,216875392004924730,2327795874186192102,24441856678955017071,251607348165713411025
%N a(n) = binomial(n + 8, 8)*7^n .
%C With a different offset, number of n-permutations of 8 objects: r, s, t, u, v, z, x, y with repetition allowed, containing exactly eight, (8) u's.
%H Vincenzo Librandi, <a href="/A170932/b170932.txt">Table of n, a(n) for n = 0..300</a>
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (63,-1764,28812,-302526,2117682,-9882516,29647548,-51883209,40353607).
%F a(n) = C(n + 8, 8)*7^n.
%F From _Amiram Eldar_, Aug 29 2022: (Start)
%F Sum_{n>=0} 1/a(n) = 12082656/5 - 15676416*log(7/6).
%F Sum_{n>=0} (-1)^n/a(n) = 117440512*log(8/7) - 235229912/15. (End)
%t Table[Binomial[n + 8, 8]*7^n, {n, 0, 20}]
%o (Magma) [Binomial(n + 8, 8)*7^n: n in [0..20]]; // _Vincenzo Librandi_, Oct 12 2011
%Y Cf. A027474, A140107, A139641, A140404, A036226, A050989.
%K nonn,easy
%O 0,2
%A _Zerinvary Lajos_, Feb 08 2010