login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Write x*cot(x) = Product_{n>=1} (1 + g_n*x^(2*n)); a(n) = numerator(g_n).
1

%I #9 Oct 04 2019 22:19:03

%S -1,-1,-1,-16,-91,-58844,-73267,-1196588,-49830764,-1715330699,

%T -35249288479,-374085503198546,-732125336837021,-779432268293710651,

%U -30015706187367326893,-183998031852529374082,-46789354983174555461,-115977125342651266593554,-248130101882943187003954597,-13171311382437535379302071714878

%N Write x*cot(x) = Product_{n>=1} (1 + g_n*x^(2*n)); a(n) = numerator(g_n).

%e -1/3, -1/45, -1/105, -16/4725, -91/66825, -58844/127702575, -73267/383107725, ...

%p t1:=x*cot(x);

%p L:=100;

%p t0:=series(t1, x, L);

%p g:=[];

%p M:=20; # number of terms to get

%p t2:=t0:

%p for n from 1 to M do

%p t3:=coeff(t2, x, 2*n); t2:=series(t2/(1+t3*x^(2*n)), x, L); g:=[op(g), t3];

%p od:

%p g;

%p g1:=map(numer, g);

%p g2:=map(denom, g);

%Y Cf. A170921, A170908-A170919.

%K sign,frac

%O 1,4

%A _N. J. A. Sloane_, Jan 31 2010

%E Corrected definition and terms - _N. J. A. Sloane_, Oct 04 2019 (thanks to _Petros Hadjicostas_ for pointing out that something was wrong).