login
A170820
Let p = n-th prime; a(n) = (p-1)/(order of (p+3)/2 mod p).
2
2, 1, 1, 3, 1, 6, 2, 4, 1, 1, 1, 2, 2, 4, 1, 5, 2, 10, 2, 3, 1, 1, 12, 4, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 5, 2, 2, 4, 3, 42, 1, 1, 1, 1, 2, 8, 1, 1, 2, 4, 1, 1, 7, 2, 4, 6, 2, 2, 4, 30, 2, 1, 1, 1, 2, 1, 3, 2, 2, 2, 1, 25, 4, 11, 1, 10, 2, 3, 1, 1, 8, 10, 33, 1, 2, 3, 1, 6, 2, 4, 1, 2, 1, 2, 2, 1
OFFSET
3,1
LINKS
I. Anderson and D. A. Preece, Combinatorially fruitful properties of 3*2^(-1) and 3*2^(-2) modulo p, Discr. Math., 310 (2010), 312-324.
MAPLE
with(numtheory); [seq((ithprime(n)-1)/order((ithprime(n)+3)/2, ithprime(n)), n=3..130)];
MATHEMATICA
a[n_] := Module[{p=Prime[n]}, (p-1)/MultiplicativeOrder[(p+3)/2, p]]; Array[a, 100, 3] (* Amiram Eldar, Dec 03 2018 *)
PROG
(PARI) a(n) = my(p=prime(n)); (p-1)/znorder(Mod((p+3)/2, p)); \\ Michel Marcus, Dec 03 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 24 2009
STATUS
approved