Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Oct 12 2024 01:41:11
%S 1,43,1806,75852,3185784,133802928,5619722976,236028364992,
%T 9913191329664,416354035845888,17486869505527296,734448519232146432,
%U 30846837807750150144,1295567187925506306048,54413821892871264854016,2285380519500593123868672
%N Expansion of g.f.: (1+x)/(1-42*x).
%H Vincenzo Librandi, <a href="/A170762/b170762.txt">Table of n, a(n) for n = 0..600</a>
%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (42).
%F a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*43^k. - _Philippe Deléham_, Dec 04 2009
%F a(0) = 1; for n>0, a(n) = 43*42^(n-1). - _Vincenzo Librandi_, Dec 05 2009
%F a(0)=1, a(1)=43, a(n)=42*a(n-1). - _Harvey P. Dale_, Mar 26 2012
%F E.g.f.: (43*exp(42*x) - 1)/42. - _G. C. Greubel_, Oct 10 2019
%p k:=43; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # _G. C. Greubel_, Oct 10 2019
%t CoefficientList[Series[(1+x)/(1-42x),{x,0,30}],x] (* or *) Join[{1}, NestList[42#&,43,30]] (* _Harvey P. Dale_, Mar 26 2012 *)
%t With[{k = 43}, Table[If[n==0, 1, k*(k-1)^(n-1)], {n, 0, 25}]] (* _G. C. Greubel_, Oct 10 2019 *)
%o (PARI) a(n)=if(n,43*42^(n-1),1) \\ _Charles R Greathouse IV_, Mar 22 2016
%o (Magma) k:=43; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // _G. C. Greubel_, Oct 10 2019
%o (Sage) k=43; [1]+[k*(k-1)^(n-1) for n in (1..25)] # _G. C. Greubel_, Oct 10 2019
%o (GAP) k:=43;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # _G. C. Greubel_, Oct 10 2019
%Y Cf. A003945.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Dec 04 2009