login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f.: (1+x)/(1-33*x).
50

%I #28 Oct 10 2024 05:09:48

%S 1,34,1122,37026,1221858,40321314,1330603362,43909910946,

%T 1449027061218,47817893020194,1577990469666402,52073685498991266,

%U 1718431621466711778,56708243508401488674,1871372035777249126242,61755277180649221165986,2037924146961424298477538

%N Expansion of g.f.: (1+x)/(1-33*x).

%H Kenny Lau, <a href="/A170753/b170753.txt">Table of n, a(n) for n = 0..658</a>

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (33).

%F a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*34^k. - _Philippe Deléham_, Dec 04 2009

%F a(0) = 1; for n>0, a(n) = 34*33^(n-1). - _Vincenzo Librandi_, Dec 05 2009

%F E.g.f.: (1/33)*(34*exp(33*x) - 1). - _Stefano Spezia_, Oct 09 2019

%p k:=34; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # _G. C. Greubel_, Oct 09 2019

%t With[{k = 34}, Table[If[n==0, 1, k*(k-1)^(n-1)], {n, 0, 25}]] (* _G. C. Greubel_, Oct 09 2019 *)

%o (Python) for i in range(1001):print(i,34*33**(i-1) if i>0 else 1) # _Kenny Lau_, Aug 03 2017

%o (PARI) vector(26, n, k=34; if(n==1, 1, k*(k-1)^(n-2))) \\ _G. C. Greubel_, Oct 09 2019

%o (Magma) k:=34; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // _G. C. Greubel_, Oct 09 2019

%o (Sage) k=34; [1]+[k*(k-1)^(n-1) for n in (1..25)] # _G. C. Greubel_, Oct 09 2019

%o (GAP) k:=34;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # _G. C. Greubel_, Oct 09 2019

%Y Cf. A003945.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Dec 04 2009