login
A170619
Number of reduced words of length n in Coxeter group on 34 generators S_i with relations (S_i)^2 = (S_i S_j)^48 = I.
0
1, 34, 1122, 37026, 1221858, 40321314, 1330603362, 43909910946, 1449027061218, 47817893020194, 1577990469666402, 52073685498991266, 1718431621466711778, 56708243508401488674, 1871372035777249126242, 61755277180649221165986
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170753, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, -528).
FORMULA
G.f. (t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 +
2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 +
2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 +
2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 +
2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 +
2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(528*t^48 - 32*t^47 - 32*t^46 - 32*t^45 - 32*t^44 - 32*t^43 - 32*t^42
- 32*t^41 - 32*t^40 - 32*t^39 - 32*t^38 - 32*t^37 - 32*t^36 - 32*t^35 -
32*t^34 - 32*t^33 - 32*t^32 - 32*t^31 - 32*t^30 - 32*t^29 - 32*t^28 -
32*t^27 - 32*t^26 - 32*t^25 - 32*t^24 - 32*t^23 - 32*t^22 - 32*t^21 -
32*t^20 - 32*t^19 - 32*t^18 - 32*t^17 - 32*t^16 - 32*t^15 - 32*t^14 -
32*t^13 - 32*t^12 - 32*t^11 - 32*t^10 - 32*t^9 - 32*t^8 - 32*t^7 -
32*t^6 - 32*t^5 - 32*t^4 - 32*t^3 - 32*t^2 - 32*t + 1)
MATHEMATICA
With[{num=Total[2t^Range[47]]+t^48+1, den=Total[-32 t^Range[47]]+ 528t^48+ 1}, CoefficientList[Series[num/den, {t, 0, 30}], t]] (* Harvey P. Dale, Aug 13 2012 *)
CROSSREFS
Sequence in context: A170475 A170523 A170571 * A170667 A170715 A170753
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved