login
A170448
Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^45 = I.
0
1, 7, 42, 252, 1512, 9072, 54432, 326592, 1959552, 11757312, 70543872, 423263232, 2539579392, 15237476352, 91424858112, 548549148672, 3291294892032, 19747769352192, 118486616113152, 710919696678912, 4265518180073472
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003949, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, -15).
FORMULA
G.f. (t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 +
2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 +
2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 +
2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 +
2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 +
2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(15*t^45 - 5*t^44 - 5*t^43 -
5*t^42 - 5*t^41 - 5*t^40 - 5*t^39 - 5*t^38 - 5*t^37 - 5*t^36 - 5*t^35 -
5*t^34 - 5*t^33 - 5*t^32 - 5*t^31 - 5*t^30 - 5*t^29 - 5*t^28 - 5*t^27 -
5*t^26 - 5*t^25 - 5*t^24 - 5*t^23 - 5*t^22 - 5*t^21 - 5*t^20 - 5*t^19 -
5*t^18 - 5*t^17 - 5*t^16 - 5*t^15 - 5*t^14 - 5*t^13 - 5*t^12 - 5*t^11 -
5*t^10 - 5*t^9 - 5*t^8 - 5*t^7 - 5*t^6 - 5*t^5 - 5*t^4 - 5*t^3 - 5*t^2 -
5*t + 1)
MATHEMATICA
With[{num=Total[2t^Range[44]]+t^45+1, den=Total[-5 t^Range[44]]+ 15t^45+ 1}, CoefficientList[Series[num/den, {t, 0, 20}], t]] (* Harvey P. Dale, Nov 24 2012 *)
CROSSREFS
Sequence in context: A170304 A170352 A170400 * A170496 A170544 A170592
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved