login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A170415
Number of reduced words of length n in Coxeter group on 22 generators S_i with relations (S_i)^2 = (S_i S_j)^44 = I.
0
1, 22, 462, 9702, 203742, 4278582, 89850222, 1886854662, 39623947902, 832102905942, 17474161024782, 366957381520422, 7706105011928862, 161828205250506102, 3398392310260628142, 71366238515473190982
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170741, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, -210).
FORMULA
G.f. (t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 +
2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 +
2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 +
2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 +
2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4
+ 2*t^3 + 2*t^2 + 2*t + 1)/(210*t^44 - 20*t^43 - 20*t^42 - 20*t^41 -
20*t^40 - 20*t^39 - 20*t^38 - 20*t^37 - 20*t^36 - 20*t^35 - 20*t^34 -
20*t^33 - 20*t^32 - 20*t^31 - 20*t^30 - 20*t^29 - 20*t^28 - 20*t^27 -
20*t^26 - 20*t^25 - 20*t^24 - 20*t^23 - 20*t^22 - 20*t^21 - 20*t^20 -
20*t^19 - 20*t^18 - 20*t^17 - 20*t^16 - 20*t^15 - 20*t^14 - 20*t^13 -
20*t^12 - 20*t^11 - 20*t^10 - 20*t^9 - 20*t^8 - 20*t^7 - 20*t^6 - 20*t^5
- 20*t^4 - 20*t^3 - 20*t^2 - 20*t + 1)
MATHEMATICA
With[{num=Total[2t^Range[43]]+t^44+1, den=Total[-20 t^Range[43]]+ 210t^44+ 1}, CoefficientList[Series[num/den, {t, 0, 20}], t]] (* Harvey P. Dale, Feb 18 2013 *)
CROSSREFS
Sequence in context: A170271 A170319 A170367 * A170463 A170511 A170559
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved