login
A170156
Number of reduced words of length n in Coxeter group on 3 generators S_i with relations (S_i)^2 = (S_i S_j)^39 = I.
0
1, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003945, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1).
FORMULA
G.f. (t^38 + t^37 + t^36 + t^35 + t^34 + t^33 + t^32 + t^31 + t^30 + t^29 + t^28
+ t^27 + t^26 + t^25 + t^24 + t^23 + t^22 + t^21 + t^20 + t^19 + t^18 +
t^17 + t^16 + t^15 + t^14 + t^13 + t^12 + t^11 + t^10 + t^9 + t^8 + t^7
+ t^6 + t^5 + t^4 + t^3 + t^2 + t + 1)/(t^38 - 2*t^37 + t^36 - 2*t^35 +
t^34 - 2*t^33 + t^32 - 2*t^31 + t^30 - 2*t^29 + t^28 - 2*t^27 + t^26 -
2*t^25 + t^24 - 2*t^23 + t^22 - 2*t^21 + t^20 - 2*t^19 + t^18 - 2*t^17 +
t^16 - 2*t^15 + t^14 - 2*t^13 + t^12 - 2*t^11 + t^10 - 2*t^9 + t^8 -
2*t^7 + t^6 - 2*t^5 + t^4 - 2*t^3 + t^2 - 2*t + 1)
CROSSREFS
Sequence in context: A170012 A170060 A170108 * A170204 A170252 A170300
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved