login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Ceiling(phi^n) where phi = (1+sqrt(5))/2.
7

%I #40 Sep 08 2022 08:45:49

%S 1,2,3,5,7,12,18,30,47,77,123,200,322,522,843,1365,2207,3572,5778,

%T 9350,15127,24477,39603,64080,103682,167762,271443,439205,710647,

%U 1149852,1860498,3010350,4870847,7881197,12752043,20633240,33385282

%N Ceiling(phi^n) where phi = (1+sqrt(5))/2.

%H Danny Rorabaugh, <a href="/A169986/b169986.txt">Table of n, a(n) for n = 0..4000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-1,-1).

%F For n >= 5, a(n) = a(n-1) + 2a(n-2) - a(n-3) - a(n-4). - _Charles R Greathouse IV_, Oct 14 2010

%F a(n) = 3*Fibonacci(n-1) + Fibonacci(n-2) + (n mod 2), n>0. - _Gary Detlefs_, Dec 29 2010

%F G.f.: (-x+x^2+x^3+x^4-1) / ((1-x)*(1+x)*(x^2+x-1)). - _R. J. Mathar_, Jan 06 2011

%F a(2k) = A000032(2k) = A169985(2k) and a(2k+1) = A000032(2k+1)+1 = A169985(2k+1)+1, for k>0. - _Danny Rorabaugh_, Apr 15 2015

%t Ceiling[GoldenRatio^Range[0,40]] (* or *) Join[{1},LinearRecurrence[{1,2,-1,-1},{2,3,5,7},40]] (* _Harvey P. Dale_, Nov 12 2014 *)

%o (Magma) [1] cat [3*Fibonacci(n-1) + Fibonacci(n-2)+ n mod 2: n in [1..40]]; // _Vincenzo Librandi_, Apr 16 2015

%o (Sage) [ceil(golden_ratio^n) for n in range(37)] # _Danny Rorabaugh_, Apr 16 2015

%o (PARI) a(n)=if(n, 3*fibonacci(n-1) + fibonacci(n-2) + n%2, 1) \\ _Charles R Greathouse IV_, Apr 16 2015

%Y Cf. A001622, A014217, A062724, A169985.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Sep 26 2010