login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 2 over the field F_3^n.
1

%I #15 May 02 2024 09:47:24

%S 8,20,48,118,306,838,2372,6886,20244,60022,178830,534358,1599374,

%T 4791718,14364057,43072966,129185618,387499222,1162397834,3487020598,

%U 10460762306,31381768198,94144406138,282431662246,847292291373,2541872205622,7625608530780,22876811586838,68630410502264

%N Maximum number of rational points on a smooth absolutely irreducible projective curve of genus 2 over the field F_3^n.

%D J. W. P. Hirschfeld, Linear codes and algebraic curves, pp. 35-53 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984.

%H Robin Visser, <a href="/A169878/b169878.txt">Table of n, a(n) for n = 1..2000</a>

%H Jean-Pierre Serre, <a href="https://gallica.bnf.fr/ark:/12148/bpt6k55351747/f35.item">Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini</a>, C. R. Acad. Sci. Paris Ser. I Math. 296 (1983), no. 9, 397-402.

%H Gerard van der Geer et al., <a href="http://www.manypoints.org">Tables of curves with many points</a>

%H Gerard van der Geer and Marcel van der Vlugt, <a href="https://doi.org/10.1090/S0025-5718-99-01143-6">Tables of curves with many points</a>, Math. Comp. 69 (2000) 797-810.

%o (Sage)

%o def a(n):

%o if n==2: return 20

%o elif (n%2 == 0): return 3^n + 1 + 4*3^(n/2)

%o elif ((floor(2*3^(n/2))%3 == 0) or (3^n-1).is_square()

%o or (4*3^n-3).is_square() or (4*3^n-7).is_square()):

%o if (frac(2*3^(n/2)) > ((sqrt(5)-1)/2)): return 3^n + 2*floor(2*3^(n/2))

%o else: return 3^n + 2*floor(2*3^(n/2)) - 1

%o else: return 3^n + 1 + 2*floor(2*3^(n/2)) # _Robin Visser_, Oct 01 2023

%Y Cf. A005525, A169869-A169883.

%K nonn

%O 1,1

%A _N. J. A. Sloane_, Jul 05 2010

%E More terms from _Robin Visser_, Oct 01 2023