login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 15*2^(n+1) - (5*n^2+22*n+30).
1

%I #15 Sep 19 2017 04:04:38

%S 0,3,26,99,282,695,1578,3411,7154,14727,29970,60563,121866,244599,

%T 490202,981555,1964418,3930311,7862274,15726387,31454810,62911863,

%U 125826186,251655059,503313042,1006629255,2013261938,4026527571,8053059114,16106122487,32212249530

%N a(n) = 15*2^(n+1) - (5*n^2+22*n+30).

%H B. Berselli, <a href="/A169832/b169832.txt">Table of n, a(n) for n = 0..1000</a> [From _Bruno Berselli_, Jun 03 2010]

%H P. Nissen and J. Taylor, <a href="http://www.jstor.org/stable/2690454">Running clubs - a combinatorial investigation</a>, Math. Mag., 64 (No. 1, 1991), 39-44.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (5,-9,7,-2). [From _R. J. Mathar_, Jun 04 2010]

%F From _Bruno Berselli_ and _R. J. Mathar_, Jun 03 2010: (Start)

%F G.f.: x*(3+11*x-4*x^2)/[(1-2*x)*(1-x)^3].

%F a(n) - 5*a(n-1) + 9*a(n-2) - 7*a(n-3) + 2*a(n-4) = 0, with n>3. (End)

%t LinearRecurrence[{5,-9,7,-2},{0,3,26,99},40] (* _Harvey P. Dale_, Sep 24 2014 *)

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Jun 01 2010