

A169806


Nonpalindromic numbers k such that k = R(k) + P(k) where R(k) is reversal(k) and P(k) is the product of the digits of k.


0



354253, 385863, 398573, 534235, 653936, 676356, 682566, 695276, 853638, 35369253, 35639453, 45469254, 45636454, 45839454, 53369235, 53639435, 54469245, 54636445, 54839445, 55769255, 56814665, 56941765, 59236195
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Number of terms below 10^8 is 29.
Obviously each palindromic number k that has at least one zero digit also has the property that k = R(k) + P(k), since R(k)=k and P(k)=0.
All other terms below 10^8 are 59871495, 65814656, 65941756, 95236159, 95871459 and 99429579.
354253 and 1655425561 are the first two prime terms of the sequence.


LINKS



EXAMPLE

354253 = 352453 + 3*5*4*2*5*3 = reversal(354253) + 3*5*4*2*5*3, so 354253 is a term.


MATHEMATICA

r[n_] := FromDigits[Reverse[IntegerDigits[n]]]; Do[
If[n > r[n] && n == r[n] + Apply[Times, IntegerDigits[n]],
Print[n]], {n, 59500000}]


CROSSREFS



KEYWORD

base,nonn


AUTHOR



STATUS

approved



