login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of ((1-x)/(1-2x))^8.
4

%I #33 Oct 02 2023 11:41:47

%S 1,8,44,200,806,2984,10364,34232,108545,332688,990736,2878144,8182432,

%T 22823680,62595328,169090048,450568960,1185832960,3085885440,

%U 7947714560,20275478528,51272351744,128605356032,320145981440,791358537728,1943278714880,4742573981696

%N Expansion of ((1-x)/(1-2x))^8.

%C a(n) is the number of weak compositions of n with exactly 7 parts equal to 0. - _Milan Janjic_, Jun 27 2010

%H Vincenzo Librandi, <a href="/A169795/b169795.txt">Table of n, a(n) for n = 0..1000</a>

%H Nickolas Hein, Jia Huang, <a href="https://arxiv.org/abs/1807.04623">Variations of the Catalan numbers from some nonassociative binary operations</a>, arXiv:1807.04623 [math.CO], 2018.

%H M. Janjic and B. Petkovic, <a href="http://arxiv.org/abs/1301.4550">A Counting Function</a>, arXiv 1301.4550 [math.CO], 2013.

%H M. Janjic, B. Petkovic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Janjic/janjic45.html">A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers</a>, J. Int. Seq. 17 (2014) # 14.3.5.

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (16, -112, 448, -1120, 1792, -1792, 1024, -256).

%F G.f.: ((1-x)/(1-2*x))^8.

%F For n > 0, a(n) = 2^(n-12)*(n+9) * (n^6 + 75*n^5 + 1999*n^4 + 23169*n^3 + 115768*n^2 + 232284*n + 142800)/315. - _Bruno Berselli_, Aug 07 2011

%t CoefficientList[Series[((1-x)/(1-2x))^8,{x,0,30}],x] (* _Harvey P. Dale_, Nov 24 2016 *)

%Y Cf. for ((1-x)/(1-2x))^k: A011782, A045623, A058396, A062109, A169792-A169797; a row of A160232.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, May 15 2010