%I #24 Oct 07 2023 21:38:23
%S 1,6,2,2,5,9,2,7,6,8,2,9,2,1,3,3,6,3,3,9,1,5,7,8,0,1,0,2,8,8,1,2,7
%N Decimal expansion of 2^107 - 1.
%C The 11th Mersenne prime A000668(11), see also the formula, and A134731, A169681, A169685 for the next three terms in that sequence. - _M. F. Hasler_, Jan 09 2013
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Mersenne_prime">Mersenne prime</a>
%F 2^107 - 1 = 2^A000043(11) - 1 = A000668(11). - _M. F. Hasler_, Jan 09 2013
%e 162259276829213363391578010288127.
%t IntegerDigits[2^107-1] (* _Paolo Xausa_, Oct 07 2023 *)
%o (Magma) Reverse(Intseq(2^107-1)); // _Arkadiusz Wesolowski_, Oct 18 2014
%o (PARI) eval(Vec(Str(2^107-1))) \\ or simply: digits(2^107-1) in PARI version 2.6+. - _M. F. Hasler_, Jan 09 2013
%Y Cf. A169681 = A000668(12), A169685 = A000668(13), A204063 = A000668(14), A248931 = A000668(15), A248932 = A000668(16), A248933 = A000668(17), A248934 = A000668(18), A248935 = A000668(19), A248936 = A000668(20).
%K nonn,cons,easy,fini,full
%O 33,2
%A _N. J. A. Sloane_, Apr 13 2010