login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A169677 The first of a pair of sequences A and B with property that all the differences |a_i - b_j| are distinct - for precise definition see Comments lines. 6
0, 1, 7, 18, 35, 59, 88, 125, 178, 233, 285, 344, 352, 442, 557, 675, 796, 797, 957, 1011, 1220, 1411, 1564, 1579, 1888, 2120, 2152, 2503, 2829, 2953, 3393, 3464, 3593, 3724, 4237, 4956, 5310, 5388, 5968, 6478, 6756, 7344, 7698, 8004, 8182 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Consider pairs of sequences A = a_1 a_2 a_3 a_4 ... and B = b_1 b_2 b_3 ... such that
1: All the terms are nonnegative integers
2: The terms of A are strictly increasing
3: The terms of B are strictly increasing
4: All the numbers |a_i - b_j| are distinct
5: The terms are computed in the following order: a(1), b(1), a(2), b(2), ..., b(n-1), a(n), b(n), a(n+1), ... and always the smallest value is chosen that satisfies constraints 1-4.
Computed by Alois P. Heinz and Wouter Meeussen, Mar 27 2010
LINKS
MAPLE
# Maple program from Alois P. Heinz:
ab:=proc() false end: ab(0):=true:
a:= proc(n) option remember;
local ok, i, k, s;
if n=1 then 0
else b(n-1);
for k from a(n-1)+1 do
ok:=true;
for i from 1 to n-1 do
if ab(abs(k-b(i))) then ok:= false; break fi
od;
if ok then s:={};
for i from 1 to n-1 do
s:= s union {abs(k-b(i))};
od
fi;
if ok and nops(s)=n-1 then break fi
od;
for i from 1 to n-1 do
ab(abs(k-b(i))):=true
od;
k
fi
end;
b:= proc(n) option remember;
local ok, i, k, s;
if n=1 then 0
else a(n);
for k from b(n-1)+1 do
ok:=true;
for i from 1 to n do
if ab(abs(k-a(i))) then ok:= false; break fi
od;
if ok then s:={};
for i from 1 to n do
s:= s union {abs(k-a(i))};
od
fi;
if ok and nops(s)=n then break fi
od;
for i from 1 to n do
ab(abs(k-a(i))):=true
od;
k
fi
end;
seq(a(n), n=1..80);
seq(b(n), n=1..80);
MATHEMATICA
ClearAll[ab, a, b]; ab[_] = False; ab[0] = True; a[n_] := a[n] = Module[{ ok, i, k, s}, If[ n == 1 , 0, b[n-1]; For[ k = a[n-1] + 1 , True, k++, ok = True; For[ i = 1 , i <= n-1, i++, If[ ab[Abs[k - b[i]]] , ok = False; Break[] ]]; If[ ok , s = {}; For[ i=1 , i <= n-1 , i++, s = s ~Union~ {Abs[k - b[i]]}; ]]; If[ ok && (Length[s] == n-1) , Break[] ]]; For[ i=1 , i <= n-1 , i++, ab[Abs[k - b[i]]] = True]; k]]; b[n_] := b[n] = Module[{ ok, i, k, s}, If[ n == 1 , 0, a[n]; For[ k = b[n-1] + 1 , True, k++, ok = True; For[ i=1 , i <= n, i++, If[ ab[Abs[k - a[i]]] , ok = False; Break[] ]]; If[ ok , s = {}; For[ i=1 , i <= n , i++, s = s ~Union~ {Abs[k - a[i]]}; ]]; If[ ok && Length[s] == n , Break[] ]]; For[ i=1 , i <= n, i++, ab[Abs[k - a[i]]] := True]; k]]; Table[a[n], {n, 1, 45}] (* Jean-François Alcover, Aug 13 2012, translated from Alois P. Heinz's Maple program *)
CROSSREFS
Sequence in context: A301709 A297646 A320281 * A263876 A192751 A272459
KEYWORD
nonn,nice
AUTHOR
R. K. Guy and N. J. A. Sloane, Mar 27 2010
EXTENSIONS
Comments clarified by Zak Seidov and Alois P. Heinz, Apr 13 2010.
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 24 13:23 EDT 2024. Contains 374584 sequences. (Running on oeis4.)