login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that neither composite(n)-+1 is composite.
3

%I #13 Oct 22 2024 20:14:51

%S 1,2,6,10,19,28,42,51,75,79,104,114,138,148,152,178,187,212,221,247,

%T 278,338,348,372,423,465,490,504,525,539,669,679,683,709,729,848,858,

%U 873,883,909,961,1028,1071,1080,1089,1104,1202,1221,1247,1251,1354,1363

%N Numbers n such that neither composite(n)-+1 is composite.

%C a(n) = A066246(A014574(n)). - _Reinhard Zumkeller_, Apr 06 2010

%H Robert Israel, <a href="/A169643/b169643.txt">Table of n, a(n) for n = 1..10000</a>

%e a(1)=1 because composite(1)-1=3=prime and composite(1)+1=5=prime.

%p Comp:= remove(isprime,[$4..2000]): nC:= nops(Comp):

%p select(t -> isprime(Comp[t]-1) and isprime(Comp[t]+1), [$1..nC]); # _Robert Israel_, Oct 21 2024

%t Position[Select[Range[2000],CompositeQ],_?(AllTrue[#+{1,-1},PrimeQ]&),1,Heads->False]// Flatten (* _Harvey P. Dale_, Jan 16 2024 *)

%Y Cf. A002808, A014574, A066246.

%K nonn

%O 1,2

%A _Juri-Stepan Gerasimov_, Apr 04 2010

%E Corrected by _Ray Chandler_, Apr 05 2010