%I #13 Oct 21 2023 11:24:49
%S 2,4,5,9,1,2,5,7,7,5,1,9,9,9,9,9,9,8,2,2,2,1,3,2,4,1,4,6,9,5,7,6,1,9,
%T 2,3,5,5,2,6,5,8,1,2,2,2,7,6,1,0,1,7,1,0,7,1,4,6,9,7,8,0,7,4,7,2,7,9,
%U 5,2,1,6,2,0,0,4,6,3,8,7,7,9,6,5,1,8,3,2,7,4,9,6,6,6,8,6,6,6,3,9,2,6,5,4,6
%N Decimal expansion of e^(Pi*sqrt(58)).
%C Related to Ramanujan's fast converging series expansion for Pi.
%D S. Ramanujan, 'Modular equations and approximations to Pi', Quart. J. Math. 45 (1914), 350-372.
%H S. Ramanujan, <a href="http://ramanujan.sirinudi.org/Volumes/published/ram06.pdf">Modular equations and approximations to Pi</a>, Quart. J. Math. 45 (1914), 350-372.
%H Wolfram Mathworld, <a href="http://mathworld.wolfram.com/PiFormulas.html">Pi Formulas</a>.
%e e^(Pi*sqrt(58)) = 24591257751.99999982221324146957619235526581222...
%t RealDigits[E^(Pi*Sqrt[58]),10,120][[1]] (* _Harvey P. Dale_, Jul 13 2018 *)
%K easy,nonn,cons
%O 11,1
%A _Mark A. Thomas_, Dec 03 2009
%E Previous Mathematica program replaced by _Harvey P. Dale_, Jul 13 2018