login
Primes p in A168540 for which q = 3^3 + 10^2*p^3 (A168487) is prime.
0

%I #3 Jan 18 2021 05:15:17

%S 2,5,7,13,17,29,61,109,137,149,191,223,227,269,311,331,337,359,389,

%T 397,409,433,457,467,491,587,619,653,661,709,727

%N Primes p in A168540 for which q = 3^3 + 10^2*p^3 (A168487) is prime.

%C It is conjectured that sequence is infinite

%D Leonard E. Dickson: History of the Theory of numbers, vol. I, Dover Publications 2005

%D Theo Kempermann, Zahlentheoretische Kostproben, Harri Deutsch, 2. aktualisierte Auflage 2005

%D Arnold Scholz, Bruno Schoeneberg: Einführung in die Zahlentheorie, Walter de Gruyter, 5. Auflage 1973

%e (1) 3^3+10^2*2^3=827=prime(144) gives a(1)=2=prime(1)

%e (2) 3^3+10^2*5^3=12527=prime(1496) gives a(2)=5=prime(3)

%e (3) 3^3+10^2*13^3=219727=prime(19588) gives a(4)=13=prime(6)

%Y A000040 The prime numbers

%Y A167535 Concatenation of two square numbers which give a prime

%Y A168147 Primes of the form p = 1 + 10*n^3 for a natural number n

%Y A168327 Primes of concatenated form p= "1 n^3"

%Y A168375 Naturals n for which the concatenation p= "1 n^3"is prime

%Y A168487 Primes of form p = 3^3 + 10^2*n^3 with a natural number n

%Y A168540 Naturals n for which the concatenation p = 3^3 + 10^2*n^3 is prime

%K nonn

%O 1,1

%A Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Dec 02 2009