Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Mar 17 2016 08:50:06
%S 9,36,49,81,121,144,169,196,225,289,324,361,441,484,529,576,625,676,
%T 729,784,841,900,961,1089,1156,1225,1296,1369,1444,1521,1681,1764,
%U 1849,1936,2025,2116,2209,2304,2401,2500,2601,2704,2809,2916,3025,3136,3249,3364
%N Squares of the form x^2+y^2+z^2 with x,y,z positive integers.
%C Integer solutions of a^2 = b^2 + c^2 + d^2, i.e., Pythagorean Quadruples. - _Jon Perry_, Oct 06 2012
%C Also null (or light-like, or isotropic) vectors in Minkowski 4-space. - _Jon Perry_, Oct 06 2012
%D T. Nagell, Introduction to Number Theory, Wiley, 1951, p. 194.
%H Robert Israel, <a href="/A169580/b169580.txt">Table of n, a(n) for n = 1..3140</a>
%H O. Fraser and B. Gordon, <a href="http://www.jstor.org/stable/2317949">On representing a square as the sum of three squares</a>, Amer. Math. Monthly, 76 (1969), 922-923.
%H D. Rabahy, <a href="https://docs.google.com/spreadsheets/d/11Wap63eI6_ELlaPOiELDQzukdqYaGt-TDfD3I5b5F0U/pubhtml">Spreadsheet revealing sequence in table of all a^2+b^2+c^2</a>
%H David Rabahy, <a href="/A169580/a169580.png">a^2+b^2+c^2 squares colored, zoomed way out to make "lines" apparent</a>
%e 9 = 1 + 4 + 4,
%e 36 = 16 + 16 + 4,
%e 49 = 36 + 9 + 4,
%e 81 = 49 + 16 + 16,
%e so these are in the sequence.
%e 16 cannot be written as the sum of 3 squares if zero is not allowed, therefore 16 is not in the sequence.
%e Also we can see that 49-36-9-4=0, so (7,6,3,2) is a null vector in the signatures (+,-,-,-) and (-,+,+,+). - _Jon Perry_, Oct 06 2012
%p M:= 10000: # to get all terms <= M
%p sort(convert(select(issqr, {seq(seq(seq(x^2 + y^2 + z^2,
%p z=y..floor(sqrt(M-x^2-y^2))), y=x..floor(sqrt((M-x^2)/2))),
%p x=1..floor(sqrt(M/3)))}),list)); # _Robert Israel_, Jan 28 2016
%t Select[Range[60]^2, Resolve@ Exists[{x, y, z}, Reduce[# == x^2 + y^2 + z^2, {x, y, z}, Integers], And[x > 0, y > 0, z > 0]] &] (* _Michael De Vlieger_, Jan 27 2016 *)
%Y For the square roots see A005767. Cf. A000378, A000419.
%Y Cf. A217554.
%K nonn
%O 1,1
%A _N. J. A. Sloane_, Mar 02 2010