login
A169472
Number of reduced words of length n in Coxeter group on 27 generators S_i with relations (S_i)^2 = (S_i S_j)^33 = I.
0
1, 27, 702, 18252, 474552, 12338352, 320797152, 8340725952, 216858874752, 5638330743552, 146596599332352, 3811511582641152, 99099301148669952, 2576581829865418752, 66991127576500887552, 1741769316989023076352
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170746, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, -325).
FORMULA
G.f. (t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 +
2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 +
2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 +
2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(325*t^33 - 25*t^32 - 25*t^31 - 25*t^30 - 25*t^29 - 25*t^28 - 25*t^27
- 25*t^26 - 25*t^25 - 25*t^24 - 25*t^23 - 25*t^22 - 25*t^21 - 25*t^20 -
25*t^19 - 25*t^18 - 25*t^17 - 25*t^16 - 25*t^15 - 25*t^14 - 25*t^13 -
25*t^12 - 25*t^11 - 25*t^10 - 25*t^9 - 25*t^8 - 25*t^7 - 25*t^6 - 25*t^5
- 25*t^4 - 25*t^3 - 25*t^2 - 25*t + 1)
MATHEMATICA
With[{num=Total[2t^Range[32]]+t^33+1, den=Total[-25 t^Range[32]]+ 325t^33+ 1}, CoefficientList[Series[num/den, {t, 0, 30}], t]] (* Harvey P. Dale, Jan 03 2013 *)
CROSSREFS
Sequence in context: A169328 A169376 A169424 * A169520 A169568 A170036
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved