login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of reduced words of length n in Coxeter group on 25 generators S_i with relations (S_i)^2 = (S_i S_j)^31 = I.
0

%I #15 Oct 11 2024 06:57:50

%S 1,25,600,14400,345600,8294400,199065600,4777574400,114661785600,

%T 2751882854400,66045188505600,1585084524134400,38042028579225600,

%U 913008685901414400,21912208461633945600,525893003079214694400

%N Number of reduced words of length n in Coxeter group on 25 generators S_i with relations (S_i)^2 = (S_i S_j)^31 = I.

%C The initial terms coincide with those of A170744, although the two sequences are eventually different.

%C First disagreement at index 31: a(31) = 6372021903844030065694345748172719416934100, A170744(31) = 6372021903844030065694345748172719416934400. - _Klaus Brockhaus_, Jun 17 2011

%C Computed with Magma using commands similar to those used to compute A154638.

%H <a href="/index/Rec#order_31">Index entries for linear recurrences with constant coefficients</a>, signature (23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, -276).

%F G.f.: (t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(276*t^31 - 23*t^30 - 23*t^29 - 23*t^28 - 23*t^27 - 23*t^26 - 23*t^25 - 23*t^24 - 23*t^23 - 23*t^22 - 23*t^21 - 23*t^20 - 23*t^19 - 23*t^18 - 23*t^17 - 23*t^16 - 23*t^15 - 23*t^14 - 23*t^13 - 23*t^12 - 23*t^11 - 23*t^10 - 23*t^9 - 23*t^8 - 23*t^7 - 23*t^6 - 23*t^5 - 23*t^4 - 23*t^3 - 23*t^2 - 23*t + 1).

%t coxG[{31,276,-23}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Feb 10 2015 *)

%Y Cf. A170744 (G.f.: (1+x)/(1-24*x)).

%K nonn

%O 0,2

%A _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009