login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of reduced words of length n in Coxeter group on 46 generators S_i with relations (S_i)^2 = (S_i S_j)^30 = I.
0

%I #12 Nov 26 2024 15:18:11

%S 1,46,2070,93150,4191750,188628750,8488293750,381973218750,

%T 17188794843750,773495767968750,34807309558593750,1566328930136718750,

%U 70484801856152343750,3171816083526855468750,142731723758708496093750

%N Number of reduced words of length n in Coxeter group on 46 generators S_i with relations (S_i)^2 = (S_i S_j)^30 = I.

%C The initial terms coincide with those of A170765, although the two sequences are eventually different.

%C First disagreement at index 30: a(30) = 40357172502824526728390486853942275047302246092715, A170765(30) = 40357172502824526728390486853942275047302246093750. - _Klaus Brockhaus_, Jun 23 2011

%C Computed with Magma using commands similar to those used to compute A154638.

%H <a href="/index/Rec#order_30">Index entries for linear recurrences with constant coefficients</a>, signature (44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, -990).

%F G.f.: (t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(990*t^30 - 44*t^29 - 44*t^28 - 44*t^27 - 44*t^26 - 44*t^25 - 44*t^24 - 44*t^23 - 44*t^22 - 44*t^21 - 44*t^20 - 44*t^19 - 44*t^18 - 44*t^17 - 44*t^16 - 44*t^15 - 44*t^14 - 44*t^13 - 44*t^12 - 44*t^11 - 44*t^10 - 44*t^9 - 44*t^8 - 44*t^7 - 44*t^6 - 44*t^5 - 44*t^4 - 44*t^3 - 44*t^2 - 44*t + 1).

%t coxG[{30,990,-44}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Nov 26 2024 *)

%Y Cf. A170765 (G.f.: (1+x)/(1-45*x)).

%K nonn,changed

%O 0,2

%A _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009