login
A169325
Number of reduced words of length n in Coxeter group on 24 generators S_i with relations (S_i)^2 = (S_i S_j)^30 = I.
0
1, 24, 552, 12696, 292008, 6716184, 154472232, 3552861336, 81715810728, 1879463646744, 43227663875112, 994236269127576, 22867434189934248, 525950986368487704, 12096872686475217192, 278228071788929995416
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170743, although the two sequences are eventually different.
First disagreement at index 30: a(30) = 74185407434244900547189100124961040137236, A170743(30) = 74185407434244900547189100124961040137512. - Klaus Brockhaus, Jun 22 2011
Computed with Magma using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, -253).
FORMULA
G.f.: (t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(253*t^30 - 22*t^29 - 22*t^28 - 22*t^27 - 22*t^26 - 22*t^25 - 22*t^24 - 22*t^23 - 22*t^22 - 22*t^21 - 22*t^20 - 22*t^19 - 22*t^18 - 22*t^17 - 22*t^16 - 22*t^15 - 22*t^14 - 22*t^13 - 22*t^12 - 22*t^11 - 22*t^10 - 22*t^9 - 22*t^8 - 22*t^7 - 22*t^6 - 22*t^5 - 22*t^4 - 22*t^3 - 22*t^2 - 22*t + 1).
MATHEMATICA
With[{num=Total[2t^Range[29]]+t^30+1, den=Total[-22 t^Range[29]]+253t^30+ 1}, CoefficientList[Series[num/den, {t, 0, 30}], t]] (* Harvey P. Dale, Mar 06 2013 *)
CROSSREFS
Cf. A170743 (G.f.: (1+x)/(1-23*x)).
Sequence in context: A169181 A169229 A169277 * A169373 A169421 A169469
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved