login
A169213
Number of reduced words of length n in Coxeter group on 8 generators S_i with relations (S_i)^2 = (S_i S_j)^28 = I.
1
1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344, 46118408, 322828856, 2259801992, 15818613944, 110730297608, 775112083256, 5425784582792, 37980492079544, 265863444556808, 1861044111897656, 13027308783283592
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003950, although the two sequences are eventually different.
First disagreement at index 28: a(28) = 525698898908274241116316, A003950(28) = 525698898908274241116344. - Klaus Brockhaus, May 24 2011
Computed with Magma using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, -21).
FORMULA
G.f.: (t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(21*t^28 - 6*t^27 - 6*t^26 - 6*t^25 - 6*t^24 - 6*t^23 - 6*t^22 - 6*t^21 - 6*t^20 - 6*t^19 - 6*t^18 - 6*t^17 - 6*t^16 - 6*t^15 - 6*t^14 - 6*t^13 - 6*t^12 - 6*t^11 - 6*t^10 - 6*t^9 - 6*t^8 - 6*t^7 - 6*t^6 - 6*t^5 - 6*t^4 - 6*t^3 - 6*t^2 - 6*t + 1).
MATHEMATICA
With[{num=Total[2t^Range[27]]+t^28+1, den=Total[-6 t^Range[27]]+21t^28+ 1}, CoefficientList[Series[num/den, {t, 0, 30}], t]] (* Harvey P. Dale, Feb 10 2014 *)
CROSSREFS
Cf. A003950 (G.f.: (1+x)/(1-7*x)).
Sequence in context: A169069 A169117 A169165 * A169261 A169309 A169357
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved