login
A168846
Number of reduced words of length n in Coxeter group on 25 generators S_i with relations (S_i)^2 = (S_i S_j)^20 = I.
0
1, 25, 600, 14400, 345600, 8294400, 199065600, 4777574400, 114661785600, 2751882854400, 66045188505600, 1585084524134400, 38042028579225600, 913008685901414400, 21912208461633945600, 525893003079214694400
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170744, although the two sequences are eventually different.
First disagreement at index 20: a(20) = 4187488247750628826782105300, A170744(20) = 4187488247750628826782105600. - Klaus Brockhaus, Apr 02 2011
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, -276).
FORMULA
G.f.: (t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(276*t^20 - 23*t^19 - 23*t^18 - 23*t^17 - 23*t^16 - 23*t^15 - 23*t^14 - 23*t^13 - 23*t^12 - 23*t^11 - 23*t^10 - 23*t^9 - 23*t^8 - 23*t^7 - 23*t^6 - 23*t^5 - 23*t^4 - 23*t^3 - 23*t^2 - 23*t + 1).
MATHEMATICA
With[{num=Total[2t^Range[19]]+t^20+1, den=Total[-23 t^Range[19]]+ 276t^20+ 1}, CoefficientList[Series[num/den, {t, 0, 20}], t]] (* Harvey P. Dale, Jul 20 2011 *)
CROSSREFS
Cf. A170744 (G.f.: (1+x)/(1-24*x)).
Sequence in context: A168702 A168750 A168798 * A168894 A168942 A168990
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved