%I #15 Apr 15 2024 20:11:44
%S 1,22,462,9702,203742,4278582,89850222,1886854662,39623947902,
%T 832102905942,17474161024782,366957381520422,7706105011928862,
%U 161828205250506102,3398392310260628142,71366238515473190982
%N Number of reduced words of length n in Coxeter group on 22 generators S_i with relations (S_i)^2 = (S_i S_j)^18 = I.
%C The initial terms coincide with those of A170741, although the two sequences are eventually different.
%C First disagreement at index 18: a(18) = 660922734891797221684071, A170741(18) = 660922734891797221684302. - _Klaus Brockhaus_, Mar 26 2011
%C Computed with MAGMA using commands similar to those used to compute A154638.
%H G. C. Greubel, <a href="/A168747/b168747.txt">Table of n, a(n) for n = 0..500</a>
%H <a href="/index/Rec#order_18">Index entries for linear recurrences with constant coefficients</a>, signature (20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, -210).
%F G.f.: (t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(210*t^18 - 20*t^17 - 20*t^16 - 20*t^15 - 20*t^14 - 20*t^13 - 20*t^12 - 20*t^11 - 20*t^10 - 20*t^9 - 20*t^8 - 20*t^7 - 20*t^6 - 20*t^5 - 20*t^4 - 20*t^3 - 20*t^2 - 20*t + 1).
%t CoefficientList[Series[(t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(210*t^18 - 20*t^17 - 20*t^16 - 20*t^15 - 20*t^14 - 20*t^13 - 20*t^12 - 20*t^11 - 20*t^10 - 20*t^9 - 20*t^8 - 20*t^7 - 20*t^6 - 20*t^5 - 20*t^4 - 20*t^3 - 20*t^2 - 20*t + 1), {t, 0, 50}], t] (* _G. C. Greubel_, Aug 10 2016 *)
%t coxG[{18,210,-20}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Apr 15 2024 *)
%Y Cf. A170741 (G.f.: (1+x)/(1-21*x)).
%K nonn,easy
%O 0,2
%A _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009